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Introduction

The theory of Teichmiiller spaces studies the different conformal structures
on a Riemann surface. After the initroduction of quasiconformal mappings
into the $ubject, the theory can be said to deal with classes consisting of
quasiconformal mappings of a Riemann surface which are homotopic
modulo conformal mappings.

It was Teichmiiller who noticed the deep connection between quasnoon—
formal mappings and function theory. He also discovered that the théory
of Teichmiiller spaces is intimately connected with ‘quadratic differentials.
Teichmiiller ([1], {2]) proved that on & compact Riemann surface of genus
greater than one, every holomorphic quadratic differential determines a quasi-
conformal mapping which is a unique extremal in its homotopy class in the
sense that it has the smallest deviation from conformal mappings. He also
showed that all extremals are obtained in this manner. It follows that the
Teichmiiller space of a compact Riemann surface of genus p > 1 is homeo-
morphic to the euclidean space RS, a

Teichmiiller’s proofs, often sketchy and intermingled with conjectures, were
put ona firm'basis by Ahlfors [ 1], Who also introduced a more flexible defini-
tion for quasiconformal mappings. The paper of Ahlfors revived -interest it
Teichmiiller’s work and gave rise to a systematic study of the general théoiy
of quasiconforinal mappings in the plane.

Another appreach to the Teichmiiller theory, initiated by Bers in the early
sixties, leads to quadratlc differentials'if an entirely different manner. ‘This
method is more general, in that it can also be applied to non-cofhpadt Rie-
mann surfaces. The quadratic differentials are now Schwarztan derivatives of
conforinal extensions of quasicotiformal mappings considered on the uhi-
versal covermg surface, the extdnsxons bcmg obtamed by usc of the Behtarm '

differential équation. r
NS I



2 Introduction

The development of the theory of Teichmiiller spaces along these lines
gives rise to several interesting problems which belong to the classical theory
of univalent analytic functions. Consequently, in the early seveaties a special
branch of the theory of univalent functions, often studned wnthout any con-
nections to Riemann surfaces, began to take shape. -

The interplay between the theory of univalent functions and the theory
of Teichmiiller spaces is the main theme of this monograph. We do give a
proof of the above mentioned classical uniqueness and existence theorems of
Teichmiiller and discuss their consequences. But the emphasis is on the study
of the repercussions of Bers’s method, with attention both to univalent func-
tions and to Teichmiiller spaces. It follows that even though the topics dealt
with provide an introduction to the Teichnmiiiller theory, they leave aside
many of its important aspects. Abikoff’s monograph [2] and the surveys of
Bers [10], [11], Earle [2], Royden (2], and Kra [2] cover material on Teich-
miiller spaces not treated here, and the more algebraic and differential geo-
metric approaches, studied by Grothendleck Bers, Earle, Thurston and many
others, are not considered. .

There is no clearly best way to organize our material. A lot of background
knowledge is needed from the theory of quasiconformal mappings and of
Riemann surfaces. A particular difficulty is caused by the fact that the inter-
action betweeén univalent functions and Teichmiiller spaces works in both
directions.

Chapter I is devoted to an exposition of quasiconformal mappings. We
have tried to collect here all the basic results that will be needed later. For
detailed proofs we usually refer to the monograph Lehto-Virtanen {1]. The
exceptions are cases where a brief proof can be easily presented or where we
have preferred to use different arguments or, of course, where no precise
reference can be given. :

Chapter II deals with problems of univalent functions which have their
origin in the Teichmiiller theory. The leading theme is the interrelation be-
tween the Schwarzian derivative of an analytic function and the complex
dilatation of its quasiconformal extension. A large fraction of the results of
Chapter II comes into direct use in Chapter III concerning the universal
Teichmiiller space. This largest and, in many ways, simplest Teichmiiller
space links univalent analytic functions @nd general Teichmiiller spaces.

A presentation of the material contained in Chapters II and III paralleling
the introduction of the Teichmiiller space of an arbitrary Riemann surface
would perhaps have provided a better motivation for some definitions and
theorems in these two chapters. But we hope that the arrangement chosen
makes the theory of Teichmiiller spaces of Riemann surfaces in Chapter V
more transparent, as the required hard analysis has by then largely been dealt
with. Also, we obtaigg clear division of the book into two parts: Chapters 1,
I and III concern complex analysis in the plane and form an independent
entity even without the rest of the book, while Chapters IV and V are related
to Riemann surfaces.
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The philosophy of Chapter IV on Riemann surfaces is much the same as
that of Chapter I. The results needed later are formulated, and for proofs
references are usually made to the standard monographs of Ahlfors—Sario
[1], Lehner [1], and Springer [1]. An exception is the rather extensive treat-
ment of holomorphic quadratic differentials, which are needed in the proof of
Teichmiiller’s uniqueness theorem. Here we have largely utilized Strebel’s
monograph [6].

Finally, after all the preparations in Chapters I-1V, Teichmiiller spdces of
Riemann surfaces are taken up in Chapjer V. We first discuss their various
characterizations and, guided by the results of Chapter III, develop their
general theory. After this, special attention is paid to Teichmiiller spaces of
compact surfaces. The torus is first treated separately and then, via the study
of extremal quasiconformal mappings, compact surfaces of higher genus are
discussed.

Each chapter begins with an introduction which gives a summary of its
contents. The chapters are divided into sections which consist of numbered
subsections. The references, such as 1.2.3, are made with respect to this three-
fold division. In references within a chapter, the first number is omitted.

In this book, the approach to the theory of Teichmiiller spaces is based on
classical complex analysis. We expect the reader to be familiar with the
theory of analytic functions at the level of, say, Ahlfors’s standard textbook
“Complex Analysis”. Some basic notions of general topology, measure and
integration theory and’functional analysis are also used without explana-
tions. Some acquaintance with quasiconformal mappings and Riemann sur-
faces would be helpful, but is not meant to be a necessary condition for
comprehending the text.



CHAPTER I
Quasiconformal Mappings

Introduction to Chapter I

Quasiconformal mappings are an essential part of the contents of this book.
They appear in basic definitions and theorems, and serve as a tool over and
over again. o

Sections 1-4 of Chapter I aim at giving the reader a quick survey of the
main features of the theory of quasiconformal mappings n the plane. Com-
plete proofs are usually omitted. For the details, an effor: was made to give
precise references to the literature, in most cases to the monograph Lehto-
Virtanen [1].

Section 1 introduces certain conformal invariants. The Poincaré metric is
repeatedly used later, and conformal modules of path families appear in the
characterizations of quasiconformality.

In section 2, quasiconformality is defined by means of the maximal dilata-
tion_of a homeomorphism. Certain compactness and distortion theorems,
closely related to this definition, are considered. Section 3 starts with the
classical definition of quasiconformal diffeomorphisms and explains the con-
® nections between various.geometric and analytic properties of quasiconfor-
mal mappings.

Section 4 is conccrned with the characterization of quasiconformal map-
ping: as homeomorphic. solutions of Reltrami differential equations. Com-
plex dilatation, a central notion throughout our presentation, is introduced,
and the basic thecorems about the existence, uniqueness and representation of
a quasiconformal mapping with prescribed complex dilatation are discussed.

The remaining two sections are more self-contained than sections 1--4, and
their contents are more clearly determined by subsequent applications. Sec-
tiou 5 is deveted to the now classical problem of extending a homeomorphic
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. self-mapping of the real axis to a quasiconfoymal self-mapping of the. half-
plane. The solution js used later in several contexts. .

_ Section. § deals with quasidiscs. Along with the, complex dllatatlon and
the Schwarzian derivative the notion of a quasidisc is a.trademark of this

.book. For this reason, we have ngen a fairly comprehensive account of their-
numerous geometric properties, in most cases with detailed proofs

‘1. Conformal Invariants
1.1. Hyperbolic Metric

In the first three chaptets of this monograph, we shall be concerned pnmanly
with mappings whose domain and range are subsets of the plane. Unless
otherwise stated, we understand by “plane” the Riemann sphere and often
use the spherical metric to remove the special position of the point at infinity.
In addition to the euclidean and spherical metrics, we shall repeatedly
avail ourselves of ‘a-conformally invariant hyperbolic metric. In the ‘unit
disc D = {z||z| < 1} one arrives at this metric by considering Mobius trans--
formations z — w,
w— wo w. 2= 2 . o
r P Wo;F ] _202.,, zo, woeD : -y
which map D onto itself. By Schwarz’s lethma, there are no other oonformal
self-mappmgs of D. It iollows that the dtﬂerentlal T

[dz]
1—|z?

defines a metric which is invariant under the group ot‘ eonformal mappmgs of
D onto itself.

The shortest curve in this metric joining two points z;, and z, of D is the
circular arc which is orthogonal to the unit tircle. The hyperbolic distance
between z, and z, is given by the formula

30

1 —2z,] +1z, — z|
Il - zlzzl - |21 - zzl

h(ll,zz) =3 108

(1 1)

The Riemann mapping theorem says that every slmply connected do ain
A of the plane with more than one boundary pointis conformally equivalent
to the unit disc. Let f:' 4 — D be a-conformal mapping, and

e ',,,‘(z)"— Ve
N . -.l.. Y ,‘. | 4 W | - ,,x‘. .
‘Then the differential, . ‘ .

‘ ﬂA(z)ldz|



6 1. Quasiconformal Mappings

defines the hyperbolic (or Poincaré) metric of A. The function 7 ,, which is
called the Poincaré density of A, is well defined, for it does not depend on the
particular choice of the mapping f. In the upper half-plane, n,(z) = 1/(2Imz).
The geodesics, which are preserved under conformal mappings, are called
hyperbolic segments.

The Poincaré density is monotonic with respect to the domain: If 4, is a
simply connected subdomain of 4 and ze 4,, then

14(2) < 14,(2). | (1.2)

For let f and f, be conformal maps of A and A4, onto the unit disc D, both
vanishing at z. Then n,(2) = |f '(z)l, 1.4,(2) = 1/1()|, and application of Sch-
warz’s lemma to the function fo ;! yields (1.2).

Similar reasoning gives an upper bound for #,(z) in terms of the euclidean
distance d(z,A4) from z to the boundary of A. Now we apply Schwarz’s
lemma to the function { - f(z + d(z, 04){) and obtain

1
dz.04)" (1.3)

For domains 4 not containing co we also have the lower bound

n4(2) S

1 .
n4(2) = %z.0A) (14)
This is proved by means of the Koebe one-quarter theorem (Nehari [2],
p. 214): If f is a conformal mapping of the unit disc D with f(0) = 0, f'(0) =
1, f(2) # oo, then d(0,df(D)) = 1/4. We apply this to the function w—
(g(w) — 2)/g'(0), where g is a conformal mapping of D onto A with g(0) = z.
Because 7 ,(z) = 1/1g'(0)|, the inequality (1.4) follows. Both estimates (1.3) and
(1.4) are sharp.

There is another lower estimate for the Poincaré density which we shall
need later. Let A be a simply connected domain and w,, w, finite points
outside A. Then

lwy — w,|
4|z willz — w,)

N4(2) 2 (1.5
for every ze A. To prove (1.5) we observe that z = f(2) = (z — w,)/(z — w»)
maps A onto a domain A’ which does not contain 0 or co. Hence, by the
conformal invariance of the hyperbolic metric and by (1.4),

1wy — wy
4(f@),04) \z— wol*

Since d(f(z),04’) < | f(2)|, the inequality (1.5) follows.

. The hyperbolic metric can be transferred by means of conformal mappings
‘to multiply connected plane domains with more than two boundary points
" and even to most Riemann surfaces. This will be explained in IV.3.6. Finally,

14(2) = n (SIS @) 2
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in V.9.6 we define the hyperbolic metric on an arbitrary complex analytic
manifold.

1.2. Module of a Quadrilateral

A central theme in what follows is to measure in quantitative terms the
deviation of a homeomorphism from a conformal mapping. A natural
* way to do this is to study the change of some conformal invariant under
homeomorphisms.

In 1.6 we shall exhibit a general method to produce conformal invariants
which are appropriate for this purpose. Hyperbolic distance is not well suited
to this objective, whereas two other special invariants, the module of a quad-
rilateral and that of a ring domain, have turned out to be particularly im-
portant. We shall first discuss the case of a quadrilateral.

A Jordan curve is the image of a circle under a homeomorphism of the
plane. A domain whose boundary is a Jordan curve is called a Jordan domain.

Let f be a conformal mapping of a disc D onto a domain A. Suppose that
A is locally connected at every point z of its boundary 04, i.e., that every
neighborhood U oz in the plane contains a neighborhood V of z, such that
V n A is connectea. Under this topological condition on 4, a standard length-
area argument yields the important result that f can be extended to a homeo-
morphism between the closures of D and A. It follows, in particular, that 64
is a Jordan curve (Newman [1], p. 173).

Conversely, a Jordan domain is locally connected at every boundary point.
We conclude that a conformal mapping of a Jordan domain onto another
Jordan domain has a homeomorphic extension to the boundary, and hence
to the whole plane. For such a mapping, the images of three boundary points
can, modulo orientation, be prescribed arbitrarily on the boundary of the
image domain. In contrast, four points on the boundary of a Jordan domain
determine a conformal module, an observation we shall gow make precise.

A guadrilateral Q(z,,2,,25,2,) is a Jordan domain and a sequence of four
points z,, z,, 23, z, on the boundary dQ following each other so as to
determine a positive orientation of dQ with respect to Q. The arcs (z,,25),
(22, 23), (23, 24) and (z4, 2,) are called the sides of the quadrilateral.

Let f be a conformal mapping of Q onto a euclidean rectangle R. If the
boundary correspondence is such that f maps the four distinguished points
2y, 23, 23, Z4 to the vertices of R, then the mapping f is said to be canonical,
and R is called a canonical rectangle of Q(z,, z,,23,2,). It-is not difficult to
prove that every quadrilateral possesses a canonical mapping and that the
canonical mapping is uniquely determined up to similarity transformations.

The existence can be shown if we first map Q conformally onto the upper
half-plane, arrange the four distinguished points in pairwise symmetric posi-
tions with respect to the origin, and finally perform a conformal mapping by
means of a suitable elliptic integral. The uniqueness part follows directly from
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the reflection principle. (For the details, see Lehto-Virtanen [1]; for this
monograph, to which several ref oes will be made in Chapter I 'we shall
henceforth use the abbreviation [L ,

Now suppose that R = {x + lyIO < x < a,0 <y < b} is a canonical rect-
angle of 3(z,,2,, 23, 2,) and that the first side {z,, z,) corresponds to the line
segment 0 < x < a. The number a/b, which does not depend on the parti-
cular choice of the canonical rectangle, is cdlled the (conformal) module of the
quadrilateral Q(z,, z,, z3,z,). We shall use the notation

M(Q(z,,22,23,2,)) = afb

for the module. It follows from the definition that M(Q(z,,2,,23,24)) =
l/M(Q(22’23’24’zl))

.From the definition it is also clear that the module of a quadrilateral is
oonformally invariant, ie., if f is a conformal mapping of a domain 4 and
Q(z,,2,,23,2,) is a quadrilateral such that Q = A and f(Q) is a Jordan do-

main, then M(Q(z,,2,,23,24)) = M(f(Q)(f(Zn ), [22), (23), f(24)))-

1.3. Length-Area Method.

It is possible to arrive at the notion of the module of a quadrilateral through
an extremal problem, by use of a length-area method. This approach has
turned out to be extremely useful and it leads to far-reaching generalizations,
even beyond complex analysis. In the general situation we shall discuss it in
1.6. In explicit form the idea was announced by A. Beurling in the 1946
Scandinavian Congress of Mathematicians in Copenhagen, and a few years
later it was used systematically for the first time by L. Ahlfors and A. Beurling.
In order to arrive at this characterization of the module we consider the
canonical mapping f of the quadrilateral Q(z,,z2,, z,,2,) onto the rectangle
R={u+iv0<u<a0<v<b} Then

J‘I |f'(z)|I>dxdy = ab.
Q .

Let T be the family of all locally rectifiable Jordan arcs in Q which join the
sides (z,, z,) and (23, z,). Then

I |f'(2)l1dz] > b
r

’

for every y e T, with equality if y is the inverse image of a vertical line segment
of R joining its horizontal sides. Hence
I J | f'(2)* dx dy
e

N
(inf j lf'(z)udzi)
1er 17

M(Q(zufz, 23,2,4)) = (1.6)
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We can get rid of the canonical mapping f if we introduce the family P
whose elements p are non-negative Borel-measurable functions in Q and
satisfy the condition f, p(z)|dz] = 1 for every yeT. With the notation

m,(Q) = [ Jqp’dxdy,
we then have .
: M(Q(zy,23,23,24)) = in£ m,(Q). - (L7
pPE

This basic formula can be proved by a length-area reasoning. Define for every
given pe P a function p, in the canonical rectangle R by (p, o f)|f’] = p.
Then, by Fubini’s theorem and Schwarz’s inequality,

m,(Q) = ‘H’ tdudv 2> —- j‘ du(rp,(u + iv)dv)z.
0

The last integral at right is taken over a line segment whose preimage isin I".
Therefore, the integral is > 1, and so m,(Q) > a/b = M(Q(z,, 25, 23, 2,)). TO
complete the proof we note that p = | f’|/b belongs to P. By (1.6) this is an
extremal function for which m,(Qf = M(Q(z,, 25, 23,2,)).

1.4. Rengel’s Inequality

The power of the characterization (1.7) is that it yields automatically upper
estimates: M(Q(z,, 2,,23,2,)) < m,(Q) for any pe P. An important applica-
tion is obtained if we choose p to be the euclidean metric. Let s, denote the
euclidean distance of the sides (z,, z,) and (z3,z,) in Q, and m the euclidean
area. Then (1.7) gives Rengel’s inequality

(Q)

l

It is not difficult to prove that equality holds if and only if Q(z,,2,,21,2,) is
a rectangle with its usual vertices ([LV], p. 22).

Using (1.8) we can easily prove that the module depends continuously on
the quadrilateral. For a precise formulation of the result let us consider a-
sequence of quadrilaterals Q,(27,23,23,23), n =1, 2, .... Suppose that this
sequence converges to Q(z,, Z,, 23, 2,) from inside, i.e., 0, < Q for every n and
to every ¢ > 0 there corresponds an n, such that for n > n, every point of the
sides of Q,(z%, 23,23, 24) has a spherical distance <¢ from the corresponding
sides of Q(z,,2,,23,2,). Then

hm M(Q,,(Z';, Z;, z;» Z:)) = M(Q(zl 122423, 24))'

L Aad ]

M(Q(z,,2;,23,24)) <

(1.8)

To prove this, we only need to carry out a canonical mapping of Q(z,,z,,
z3,2,) and apply Rengel’s inequality to the image of Q,(z%, 23,23, 23).
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Rengel’s inequality also makes it possible to characterize conformality in
terms of the modules of quadrilaterals, without any a priori differentiability:

Theorem 1.1. Let f: A — A’ be G sense-preserving homeomorphism which leaves
invariant the modules of the quadrilaterals of the domain A. Then f is conformal.

\We sketch a proof. Map a quadrilateral of 4-and its image in A’ canonically
onto identical rectangles R and R’ whose sides are parallel to the coordinate
axes. Given a point z = x + iy of R, we consider the two rectangles R, and
R onto which R is divided by the vertical line through z. Since all modules
remain invariant, it follows from Rengel’s mequahty, with regard to the
possibility for equality, that the images of R, and R, in R’ are also rectangles
(cf. [LV], p. 29). But then the real part of the image of z must be x. A similar
argument shows that the i gmary part of z does not change either. Thus the
induced mapping of R onto R’ is the identity, and the conformality of f
follows. ,’ .

1.5. Module of a Ring Domain

A doubly connected domain in the extended plane is called a ring domain.
Unlike simply connetted domains, which fall into three conformal equiva-
lence classes, ring domains possess infinitely many conformal equivalence
classes. A counterpart for Riemann’s mapping theorem says that a ring
domain can always be mapped conformally onto an annulus r < |z| < R,
where r > 0, R < co. It follows that every ring domain B is conformally
equivalent to one of the following annuli: 1° 0 < |z} < o0, 2°1 < |z| < 0, 3°
1 <|z|l <R, R < co. In case 3° the number R determines the equivalence
class, and

M(B) = logR

is called the module of B. In cases 1° and 2° the module of B is said to be
infinite. A conformal mapping of B onto an annulus is called a canonical
mappmg of B.

Just as in the case of quadrilaterals, the module of ring domains can also
be deﬁned without reference to canonical mappings. Let I' now be the family
of ifiable Jordan curves in a rmg domain B which separate the bound-

ts of\B. As before, P is the family of all non-negative Borel-
measurable functions in B with §,pldz| = 1 for every yeT. Then
M(B) = 2= inf m,(B).
oeP ‘

By use of this formula, many geometrically more or less obvious state-
ments can be rigorously founded. We list here some applications. The first
result says that the module cannot be large if n€ither of the boundary com-
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ponents is small in the spherical metric: Let B be a ring domain which sepa-
rates the points a,, b, from the points a,, b,. If the spherical distance between
a;and b, i=1,2,is >0, then

M(B) < n?/26? (1.9

The second estimate shows that if the boundary components are close to
each other and none of them is small, then the module is small. More pre-
cisely: Let B be a ring domain whose boundary components have spherical
diameters > 6 and a mutual spherical distance <& < 6. Then

tan(6/2)
tan(e/2)

For the proofs of (1.9) and (1.10), see [LV], p. 34.

The third inequality solves an extremal problem. We introduce the Grétzsch
ring domain whose boundary components are the unit circle and the line
segment {x|0 < x < r}, 0 <r < 1; let u(r) denote its module. If B is a ring
domain separating the unit circle from the points Q0 and r, then

M(B) < u(r).

This was proved by Grotzsch in 1928 ([LV], p. 54).

A simple application of the reflection principle shows that the Teichmiiller
ring domain B bounded by the line segments —r, < x <0 and x 2r, has the
module

M(B) < n*flog

(1.10)

M(B) = 2p((ry /(ry + 12))'?). (L.11)

This domain is also connected with an extremal problem: 1f the ring domain
B separates the points 0 and z, from the points z, and co, then

M(B) < 2p((Iz,|/(iz4| + 1221))"?). (1.12)

Inequality (1.12) generalizes a result of Teichmiiller; for the proof we refer
to [LV], p. S6.

1.6. Module of 3 Path Family

We showed above that the modules of quadrilaterals and ring domains can
be defined with the aid of certain path families. We shall now consider the
more general situation in which an arbitrary family of paths is given.

By our terminology, a path is a continuous mapping of an interval into the
plane and a curve the image of the interval under a path. We feel free not to
make a very clear distinction between a path and a curve, if there is no fear
of confusion, e.g., to use the same symbol for a path and its image.

Let A be a domain and I' a family of paths in A. We associate with I the
class P of non-negative Borel measurable functions p in A4 which satisfy the
condition
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J pldz] =z i

for every locally rectifiabic 7 in I'; such a p is said to be admissible for I'. The
number

M(T) = inf “' p2dxdy
peP J JA

is calied the module of the path family T

Ti:c module of a quadrilateral and of 2 ring domain are special cases of this
notion, whose properties are studied in [LV], pp. 132-136.

If f: A — A’ is a homeomorphism, we define f(I') = { foy|yeI}. It follows
from the definition of the module that if f is conformal, then M(f(I) =
M(T), i.e., the module of a path family is conformally invariant.

2. Geometric Definition of Quasiconformal
Mappings

2.1. Definitions of Quasiconformality

Given a domain A. consider all quadrilaterals Q(z,,z2,,23,2,) with Q c 4.
Let /: A —» A’ be a sense-preserving homeomorphism. The number-

sup M(f(Q)(f(z,), [(22), (23), /(24))
(4] M(Q(z,,23,23,2,))

is called the maximal dilatation of f. It is always > 1, because the modules of
Q(z,.2,,23,24) and Q(z,.24,2,4,2,) are reciprocals.

Since the module is a conformal invariant, the maximal dilatation of a
conformal mapping is 1. By Theorem 1.1, the converse is also true: if the
maximal dilatation of f is equal to I, then f is conformal. From this observa-
tion we arrive conveniently at the notion of quasiconformality.

Definition. A sense-preserving homeomorphism with a finite maximal dilata-
tion is quasiconformal. If the maximal dilatation is bounded by a number K,
the mapping is said to be K-quasiconformal.

This “geometric” definition of quasiconformality was suggested by Pfluger
[1] in 1951, and its first systematic use was by Ahlfors [1] in 1953.

By this terminology, f is 1-quasiconformal if and only if f is conformal. If
f is K-quasiconformal, then M(f(Q)) = M(Q)/K for every quadrilateral in
A. A mapping f and its inverse ! are simultaneously K-quasiconformal.
From the definition it also follows that if f: 4 — B is K,-quasiconformal and
g: B — C is K,-quasiconformal, then go f is K, K,-quasiconformal.
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The definition of quasiconformality could equally well have been given in
terms of the modules of ring domains: A sense-preserving homeomorphism f of
a domain A is K-quasiconformal if and only if the module condition

M(f(B)) < KM(B) @21

holds for every ring domain B, B < A.

The necessity of the condition can be established easily if the canonical
annulus of B, cut along a line segment joining the boundary components, is
transformed to a rectangle with the aid of the logarithm. To prove the suf-
ficiency requires somewhat more elafqrate module estimations ([LV], p. 39).

Inequality (2.1) shdws that a quagiconformal mapping cannot “blow up”
a point, and the well known resulf on the removability of isolated singu-
larities of conformal mappings cil be readily generalized ([LV], p. 41):
A K-quasiconformal mapping of adomain A with an isolated boundary point
a can be extended to a K-quasicorformal mapping of A U {a}.

We mention here another generalized extension theorem (cf. 1.2): A quasi-
conformal mapping of a Jordan domain onto another Jordan domain can be
extended tc a homeomorphism between the closures of tiie domains. This can be
proved by a modification of the proof for conformal mappings ([LV], p. 42),
or deduced directly from the corresponding result for conformal mappings
by use of Theorem 4.4 (Existence theorem for Beltrami equa?'bns).

The modules of quadrilaterals and ring domains, which wg used to charac-
terize quasiconformality, are modules of certain path families. As a matter of
fact, the following general result, proved by Viisild in 1961, is true.

A K-quasiconformal mapping f of a domain A satisfies the inequality

M(f(IN) < KM(') 22)

for every path family I of A.

Hersch, one of the pioneers in applying curve families to quasiconformal
mappings, asked as early as 1955 in his thesis whether (2.2) could be true for
all path families. At that time, certain “analytic” properties of quasiconformal
mappings, which the proof ([LV], p. 171) seems to require, were not yet
known. These properties will be discussed in section 3. The reason we men-
tion the result (2.2) here is that we could have taken it as a definition for

. K-quasiconformality. In a way, a characterization by means of the general
relation (2.2) is more satisfactory than the definition which is based on the
special notion of the module of a quadrilateral. However, we have preferred
to use quadrilaterals, not merely for historical reasons, but also to remain
true to the presentation in the monograph [LV], to which repeated refer-
ences are being made.

2.2. Normal Families of Quasiconformal Maﬁpings

Let us consider a family whose elements are mappings of a plane domain 4
into the plane. Such a family is said to be normal if every sequence of its
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elements contains a subsequence which is locally uniformly convergent in A.
To cover the possibility that co lies in A4 or in the range of the mappings, we
use the spherical metric. If oo is not there, we can of course swnch to the
topologically equivalent euclidean metric.

If a family is equicontinuous, then it is normal. This is the result on which
the proofs for a family to be normal are usually based in complex analysis.
For instance, if the family consists of uniformly bounded analytic functions,
equicontinuity follows immediately from Cauchy’s integral formula, and so
normality can be deduced. A generalization of this result, proved by use of
the elliptic modular function, says that if the functions are meromorphic and
omit the same threce values, then the family is normal. <

Much less is needed for normality if the functions are assumed to be
injective.

Lemma 2.1. Let F be a family of K-quasiccnformal mappings of a domain A.
If every f € F omits two values which have a mutual spherical distance >d > 0,
then F is equicontinuous in A.

Proor. Let s denote the spherical distance. Given an ¢, 0 < ¢ <. d, and
a point z,€ A, we consider a ring domain B = {z|6 < s(z,z0) < r} with
{zls(z,24) < r} = A, and choosg & > 0 so small that M(B) > n2K/2¢>. Let z,
be an arbitrary point in the neighborhood V = {z|s(z,z,) < 6} of z,.

Let us consider an f € F. By assumption, f omits two values a and b with
s(a,b) = d. The ring domain f(B) separates the points f(z,), f(z,) from the
points a, b. If n = min(d, s(f(2¢), f(2,))), it follows from formula (1.9) that
M(f(B)) < 2n?/n>. This yields n < £ and hence the desired estimate s( f(z,),
f(2)) < £ whenever ze V, for every fe F. O

Lemma 2.1 yields various criterions for a family to be equicontinuous and
hence normal. The following will come into use several times.

Theorem 2.1. A family F of K-quasiconformal mappings of a domain A is
equicontinuous and normal, if for three fixed points z,, z,, z3 of A and for
every f€F, the distances s(f(z;), f(z;)) are uniformly bounded away from zero
Jori,j=1,2,3,i#j.

Proor. By Lemma 2.1, the family F is equicontinuous in A\{z;,z;}, i, j =
1,2, 3,1 # j, and hence throughout 4. 0

2.3. Compactness of Quasiconformal Mappings

_ Let (f,) be a sequence of K-quasiconformal mappings of a domain A which
is locally uniformly convergent in A. If the limit function f is not constant, it
must take at least three different values, because it is continuous. It follows

- from Theorem 2.1 that the functions f, constitute an equicontinuous family.
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K-quasiconformal mappings possess the same compactness property as
conformal mappings.

Theorem 2.2. The limit function f of a sequence (f,) of K-quasiconformal
mappings of a domain A, locally uniformly convergent in A, is either a con-
stant or a K-quasiconformal mapping.

Proor. If f is a homeomorphism, then it follows easily from the definition of
K-quasiconformality and from the continuity of the module of quadrilaterals
that f is K-quasiconformal ([LV], p. 29). A continuous injective map of an
open set of the plane into the plane is a homeomorphism (Newman [1],
p- 122). Therefore, it is sufficient to show that a non-constant limit function
[ is injective. This we can prove, utilizing the fact that the family {f,} is
equicontinuous, with the aid of the module estimate (J.10) ((LV1, p. 74). O

In case every f, maps A onto a fixed domain A’, more can be said about
the limit function.

Theorem 23. Let A be a domain with at least two boundary points and
(/) a sequence of K-quasiconformal mappings of A onto a fixed domain
A'. If the sequence (f,) converges in A, then the limit function is either a
K-quasiconformal mapping of A onto A’, or a mapping of A onto a boundary
point of A'.

Here we need not assume that ( f,) is locally uniformly convergent, because
we conclude from Lemma 2.1 that {f,} is a normal family. The theorem
follows from equicontinuity and normal family arguments ([LV], p. 78)

In 4.6 we shall study the convergence of K-quasiconformal mappings f,
more closely. It turns out that, even though the mappmgs /» tend uniformly
towards a K-quasiconformal limit f, the local mapping properties of f and
the approximating functions f, may be quite different.

2.4. A Distortion Function

In later applications we shall often encounter a distortion function which we
shall now introduce, starting from its simple geometric interpretation.

Let F be the family of K-quasiconformal mappings of the plane which map
the real axis onto itself and fix the points — 1, 0 and oc. By Theorem 2.1, F is
a normal family, and so

A(K) = max{ f(1)| f e F} s (23)

exists. This defines our distortion function 4, for which we shall now derive a
more explicit expression.
Consider the quadrilateral H(— 1,0, 1, o), where H is the upper half-plane.
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The Mobius transformation z — (1 + z)/(1 — 2) maps it onto the quadri-
laterg] H(O, 1, 0, —1). Hence, these two quadnlaxerals have the same module.
-On the other hand, the modules are reclprocal and so M(H(—1,0,1,00)) =
M(H(O,1, o5, —-1))=1
Let us choose an f € F and write t = f(1). We form the Teichmiiller ring B
~Jbounded by the line segments —1 < x <0 and x > ¢. If B is conformally
equivalent to the annulus 4 = {z|1 < |z| < R}, then the canonical mapping
'\ of B can be so chosen that the upper half of B is conformally equivalent to
\\e upper half of A. By applying the mapping z — log z we canclude that

M(H(O,t, 00, — 1)) = M(B)/n.

By formula (1.11), M(B) = 2u((1 + t)"*2). Since f is K-quasiconformal,
M(H(,t, 00, —1)) < KM(H(0, 1, 00, — 1)) = K. If we combine all these esti-
mates, we obtain

T t=f() S (W rK/2)) - 1. 2.4)

In order to show that there is an f for which equality holds, we first make
a general remark: Let f be a homeomorphism of a domain A and I a closed
line segment which lies in 4 with the possible exception of its endpomts Then
S has the same maximal dilatation in 4 and in A\I. This can be proved by
means of Rengel’s inequality ([LV], p. 45), or by making use of thie analytic
characterization of quasiconformality which will be given in 3.5. It follows
that the reflection principle for conformal mappings generalizes as such for
K-quasiconformal mappings. In particular, a K-quasiconformal self-mapping -
of the upper half-plane can be extended by reflection in the real axis to a
K-quasiconformal mapping of the plane.

Let us now return to (2.4). Let f; be the canonical mapping of the quadri-
lateral H(O, 1, oo, — 1) onto the square Q(0,1,1 + i,i), « the affine stretching
x + iy = Kx + iy, and f, the canonical mapping of H(0,t, co, —1) onto the
rectangle R(0, K, K + i,i). Then the mapping f which is equal to f;oao f,
in H and its mirror image in the lower half-plane is K-quasiconformal in the
plane. For this f, equality holds in (2.4). It follows that

MK) = (' (nK/2)) 2 — 1.
From the obvious result A(1) = 1 we conclude that

w(1//2) = n12. @5)

Typically the reasoning goes in the other direction, in that we retrieve in-
formation about A(K) by estimating u(r). For instance, we obtain in this way

MK) = {ke™® — 1 + o(1), (2.6)
with a positive remainder term o(1) as K — oo ([LV], p. 82). Also,
'A(K) < exp(4.39(K — 1))
(Beurling-Ahlfors [1]), which tells about the behavior of 4(K) as K — 1. In
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particular, we see that A is continuous at K = 1; continuity at an arbitrary K
follows from the continuity of r — u(r).

2.5. Circular Distortion

A conformal mapping of the plane which fixes 0 and co maps the family
of circles centered at the origin onto itself. Under normalized X-quasicon-
formal mappings the images of these circles have “bounded distortion”. To
be precise:
Theorem 2.4. Let f be a K-quasiconformal mapping of the plane fixing 0 and
0. Then for everyr > 0,
max,| f(re'®)|
min,| f(re'®))

where the constant c(K) depends only on K.

< c(K), : 2.7)

There are many ways to prove this important theorem. A normal family
argument shows that a finite bound c¢(K) must exist. A quantitative esti-
mate is obtained as follows. Let z; and z, be points on the circle |z| =
r at which the minimum and maximum of |f(z)| are attained. For B' =
{wimin | f(re'®)| < |w| < max,|f(re'®)|}, let B be the inverse image of B'.
Then B separates the points 0, z, from the points z,, ¢0. Hence, by (1.12)
and (2.5),

M(B) < 2u((Iz, /(12| + |221))"?) = 2u(1//2) = .

Consequently, M(B') < KM(B) < nK, and it follows that (2.7) holds for
c(K) = ek,

The sharp bound in (2.7) is A(K) (proved by Lehto-Virtanen-Vdisild in
1959). This follows from the fact that, as a generalization of (2.3), A(K) is the
maximum of |f(z)| on the unit circle in the family of K-quasiconformal
mappings of the plane which fix —1, 0 and co but which are not required to
map the real axis onto itself. There seems to be no ¢asy way to prove this
result.

Theorem 24, in a form in wlnch the value of the sharp bound is not
needed, will render us valuable service in section 6 when we study the geo-
metry of quasidiscs. With these applications in mind, we draw here a further
conclusion from (2.7).

Letfbea K-quasnconformal mapping of the plan‘,ﬁnng 0. We infer from
(2.7) that if Izz — 20| < |24 — 20|, then

1f(z2) = f2o)l < e(K)|f(z1) = fl2o)l. (2.8)

The following generalization is also readily obtained. If |z, — 2ol < nlz; — Z|,
wheren > 1 is an integer, then
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1£(22) = fzo)! < ne(KY' | f(z4) — f(zo)) | 29
In order to prcve-this, we denote by {,, k =0, 1, ..., n, the equidistant
points on‘the ray from zq through z, for which {{, — {,_;| = |z; — z,|/n; here

Lo = 2o, {» = 23. By (2.8), | f({s) — fCx-1)i < c(K)| f(Ca-1) — f(lh2)| for k =
2,..., n. Hence, by the triangle inequality,

fzz) — fzo)l < 11C) — fizo)l 'i' (K < ne(KP™ I£) — f(zo)l
By (28),1£C) - f@o)l < () S(z) ~ f(zo)l, and (29) follows.

We conclude this section with the remark that quasiconformality can be
defined by means of the distortion function H,

max, |/ + re®) = S
HE =0 3P i, 1 e + re™) — S

even though we shall not make use of this characterization. A sense-
preserving homeomorphism f of a domain A is K-quasiconformal if and only
if H is bounded in A\{c0,f *(o0)} and H(z) < K almost everywhere in A
([LV), pp. 177-178).

3. Analytic Definition of Quasiconformal
Mappings

3.1. Dilatation Quotient

When the definition of quasiconformality in terms of the modules of quadri-
laterals was given in the early fifties, quasiconformal mappings had been
studied and successfully applied in complex analysis for more than two
decades. Historically, the starting point for generalizing conformal mappings
was to consider, not arbitrary sense-preserving homeomorphisms, but diffeo-
morphisms, i.e., homeomorphisms which with their inverses are continuously
differentiable. We can then generalize the characteristic property of confor-
mal mappings that the derivative is independent of the direction by requiring
that the ratio of the maximum and minimum of the absolute value of the
directed derivatives at a point is uniformly bounded.

We shall now show that this classical definition gives precisely those quasi-
conformal mappings which are diffeomorphic. This local approach using
derivatives is often much more convenient than the definition using modules
of quadrilaterals when the problem is checking the quasiconformality of a
mapping given by an analytic expression.
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To make the above remarks precise, we introduce for a sense-preserving
diffeomorphism f the complex derivatives

F=4f—if) o =HhL+if)

and the derivative 0, f in the direction o:

fiz + re*) - fs)

[

0,f(2) = lim

r=0 re

Then 6, f = of + dfe” ", and so

max 10./G)| = 1@+ |3, minla.f(Z)l = 19f(2) - Q).

The difference |3f(2)| — 19f(2)| is positive, because the Jacobian Jp=|of1* -
|9f |2 is positive for a sense-preserving diffeomorphism. We conclude that the
dilatation quotient

_ maxJa.f| _|3fl + 131
"7 minglof1 11— 131

is finite. )

The mapping f is conformal if and only if 3f vanishes identically. Then o, f
is independent of «: we have g, f = df = f'. This is equivalent to the dilata-
tion quotient being identically equal to 1.

The dilatation quotient is oonformally invariant: If g and h are conformal
rrappings such that w = ho fog is defined, then direct computation shows
that D,(z) = D,(g7'(2)).

3.2. Quasiconformal Diffeomorphisms

For diffeomorphisms quasiconformality can be characterized with the aid of
the dilatation quotient.

Theorem 3.1. Let f: A — A’ be a sense-preserving diffeomorphism with the
property
D) <K

Jor evéry z€ A. Then f is a K-quasiconformal mapping.

Proofr. We pick an arbitrary quadrilateral @ of 4. Let w be the mapping
which is induced from the canonical rectangle R(0, M, M + i,i) of Q onto
the canonical rectangle R'(0, M', M’ + i,i) of f(Q). Because of the conformal
invariance of the dilatation quotient, D, is also majorized by K. Hence
jwg|? < max|d,w|® < KJ,, and the desired result M’ < KM follows by use
of a customary length-area reasoning:
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M’ = m(R’) =.”‘ J(2)dxdy > '112” |we(2)1* dx dy
R
1

M 2 ’
2
MKJ dy(J‘o lw,,(z)ldx) 2> M*/MK. a

Theorem 3.1 is the classical definition of K-quasiconformality given by
Grotzsch [1] in 1928.
The converse to Theorem 3.1 is as follows:

Theorem 3.2. Let f A—- A bea K-quasxconformal mapping. If f is differenti-
able at z,€ A, then

max |0, f(zo)| < Kmin|d,f(zo)l. (ER))

The idea of the proof is to consider a small square Q centered at z, and
regard it as a quadrilateral with the vertices at distinguished points. The area
and the distance of the sides of f(Q) can be approximated by expressions
involving the partial derivatives of f at z,. Application of Rengel’s inequality
then yields a lower estimate for M(f(Q)) from which the desired inequality
(3.1) follows. (For details we refer to [LV], p. 50.)

By combining Theorems 3.1 and 3.2 we obtain the following characteriza-
tion for quasiconformal diffecomorphisms: A sense-preserving diffeomorphism
[ is K-quasiconformal if and only if the dzlatatlon condition D/(z) < K holds
everywhere.

The class of K-quasiconformal diffeomorphisms does not possess the com-
pactness property of Theorem 2.2. This is one of the reasons for replacing the

classical definition of Grotzsch by the more general one. Another reason will
be discussed in 4.5.

3.3. Absolute Continuity and Differentiability

We shall soon see that an arbitrary quasiconformal mapping of a domain A
is differentiable almost everywhere in 4. From Theorem 3.2 it then follows
that the dilatation condmon (3.1) is true at almost all points of 4. However,
the converse is not true, i.c., a sense-preserving homeomorphism f which is
differentiable a.c. and satisfies (3.1) a.e. is not necessarily K-quasiconformal.
What is required is a notion of absolute continuity.

A continuous real-valued function u is said to be absolutely continuous on
lines (ACL) in &, domain A if for each closed rectangle {x + iyja < x <b,
c < y < d} c A, the function x — u(x + iy) is absolutely continuous on [a, b]
for almost all ye[c,d] and y — u(x + iy) is absolutely continuous on [c,d]
for almost all x € [a, b). A complex valued function is ACL in A if its real and
imaginary parts are ACL in 4.



3. Analytic Definition of Quasiconformal Mappings 21

It follows from standard theorems of real analysis that a function f which
is ACL ia A has finite partial derivatives f, and f, a.c. in A.

Theorem 3.3. A quasiconformal mapping is absolutely continuous on lines.

This result was first established by Strebel (1955) and Mori. A later proof
by Pfluger, which uses Rengel’s inequality and a minimum of real analysis, is
presented in [LV], p. 162.

From Theorem 3.3 we conclude that a quasiconformal mapping has finite
partial derivatives a.e. From this we can draw further conclusions by making
use of the following result:

Let f be a complex-valued, continuous and open mapping of a plane domain
A which has finite partial derivatives a.e. in A. Then f is differentiable a.e. in A.

The proof, which is due to Gehring and Lehto (1959), uses the maximum
principle’and a standard thcorem on the density of point sets ([LV], p. 128).

Application to quasiconformal mappings yields, with regard to Theorem 3.2,
a basic result:

Theorem 3.4. A K-quasiconformal mapping f of a domain A is differentiable
and satisfies the dilatation condition (3.1) almost everywhere in A.

Differentiability a.e. of quasiconformal mappings was first proved by Mori
{1] with the aid of the Rademacher-Stepanoff theorem and Theorem 2.4.

3.4. Generalized Derivatives

The ACL-property, which depends on the coordinate system, becomes much
more useful when combined with local integrability of the derivatives. A
function f is said to possess (generalized) LP-derivatives in a domain 4, p > 1,
if fis ACL in A and if the partial derivatives f, and f, of f are L?-integrable
locally in A. It is also customary to say that the function f then belongs to
the Sobolev space W, .. This property is preserved under continuously
differentiable changes of coordinates ([LV], pp. 151-152).

Roughly speaking, classical transformation rules of Calculus between curve
and surface integrals remain valid {or functions with LP-derivatives. This is
one reason for the importance of this class of functions. (For details and more
information see, e.g., [LV], pp. 143-154 or Lehto [4], pp. 127-131))

A quasiconformal mapping has L*-derivatives. In order to prove this we first
note that the dilatation condition (3.1) implies the inequality

max |9,f(2)|* < KJ(z).

In particular, | £,(2){* < KJ(2), | £,(2)* < KJ‘(z) a.e. The Jacobian of an almost
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everywhere differentiable homeomorphism is locally integrable ([LV],
p. 131). Consequently, f, and f, are locally L*-integrable.

A homeomorphism with L2-derivatives is absolutely continuous with respect

to two-dimensional Lebesgue measure ([LV], p. 150). Thus quasiconformal

mappings have this property. They carry sets measurable with respect to

two-dimensional measure onto other sets in this class. The formula

LJ = m(f(E)) (3.2

holds for every quasiconformal mapping f of a domain 4 and for every
measurable set E c A. If we apply (3.2) to the inverse mapping f 1, we
deduce that for a quasiconformal mapping J(z) > 0 almost everywhere.

The considerations in 4.4 will show that every quasiconformal mapping
has not only L2-derivatives but actually LP-derivatives for some p > 2. This
is a much deeper result than the existence of L2-derivatives.

3.5. Analytic Characterization of Quasiconformality

A simple counterexample, constructed with the help of Cantor’s function,
shows that a homeomorphism need not be quasiconformal even though it
is differentiable a.e., satisfies (3.1) a.e. with K = 1, has bounded partial de-
rivatives, and is area preserving ([LV], p. 167). What is required is the
ACL-property, but once this is assumed it together with (3.1) guarantees
quasiconformality.

Theorem 3.5. A sense-preserving homeomorphism f of a domain A is K-quasi-
conformal if

1° fis ACL in A4;

2° max,|d, f(z)| < K min,|d, f(2)| a.c. in A.

Proor. We first note that being ACL, the mapping f has partial derivatives
a.e. and, as a homeomorphism, is therefore differentiable a.e. Thus condition
2° makes sense. As above, we conclude that f has L2«derivatives. After this,
we can follow the proof of Theorem 3.1, apart from obvious modifications.

- 0

Theorem 3.5 is called the analytic definition of quasiconformality. Appar-
ently different from the equivalent geometric definition, it sheds new light on
the connection with the classical Grotzsch mappings. In the next section we
shall show that the analytic definition can be written in the form of a differen-
tial equation. This leads to essentially new problems and results for quasi-
conformal mappings.

Under the additional hypotheses that f is differentiable a.e. and has
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L!-derivatives, Theorem 3.5 was first established by Yi}jobd in 1955. Later
Bers and Pfluger relaxed the a priori requirements. Under the above mini-
mal conditions, the theorem was proved by Gehring and Lehto in 1959.
(For references and more details, see [LV], p. 169.)

4. Beltrami Differential Equation

4.1. Complex Dilatation

Inequality (3.1) is a basic property of quasiconformal mappings. The very
natural step to express therein more explicitly the maximum and minimum
of |0,f(2)| leads to the important notion of complex dilatation and reveals a
connection between the theories of quasiconformal mappings and partlal
differential equations.

Let f: A - A’ be a K-quasiconformal mapping and z€ A a point at which
f is differentiable. Since max|d,f] = |of| + |9f), min|d,f| = |df] — |of], the
dilatation condition (3.1) is equivalent to the inequality

6 < gt | @

Suppose, in addition, that J,(z) > 0. Then df(z) # 0, and we can form the
quotient
o’
@)

The function y, so defined a.e. in 4, is called the complex dilatation of f. Since
f is continuous, u is a Borel-measurable function, and from (4.1) we see that

u(2) =

K-
u@@)| < KTl

Complex dilatation will play a very central role in our representation. It
has a simple geometric interpretation. At a point z at which u is defined, the
mapping

<1 4.2)

(=S + U (¢ -2+ FR(C - 7)

is a non-degenerate affine transformation which maps circles centered at z
onto ellipses centered at f(2). The ratio of the major axis to the minor axis of
the image ellipses is equal to (1 + |u(2)])/(1 — |u(z)]). We see that the smaller
|u(2)) is, the less the mapping f deviates from a conformal mapping at the
point z. If u(z) # 0, the argument of u(z) determines the direction of maximal
stretching: {0, f(z)| assumes its maximum when a = arg u(z)/2.
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4.2. Quasiconformal Mappings and the Beltrami Equation

The definition of complex dilatation leads us to consider differential equations

of = pdf. 4.3)

An equation (4.3), where u is measurable and || 1), < 1, is called a Beltrami
equation. If f is conformal, u vanishes identically, and (4.3) becomes the
Cauchy-Riemann equation of = 0. ,

A function f is said to be an LP-solution of (4.3) in a domain A if f has
LP-derivatives and (4.3) holds a.e. in A.

Theorem 4.1. A homeomorphism f is K-quasiconformal if and only if f is an
L2-solution of an equation of = udf, where u satisfies (4.2) for almost all z.

Proor. The necessity follows from Theorem 3.4 and the sufficiency from
Theorem_3.5, when we note that || u}|, < 1 implies that f is sense-preserving.
. ad

The Beltrami equation has a long history. With a smooth coefficient g, it
was considered in the 1820’s by Gauss in connection with the problem of
finding isothermal coordinates for a given surface (cf. IV.1.6). As early as
1938, Morrey [1] systematically studied homeomorphic L2-solutions of the
equation (4.3). But it took almost twenty years until in 1957 Bers [1] ob-
served that these solutions are quasiconformal mappings.

In 4.5 it will become apparent that (4.3) always has homeomorphic solu-
tions, i.e., that the complex dilatation of a quasiconformal mapping can be
prescribed almost everywhere. This is a deep result. It is much easier to
handle the question of the uniqueness of the solutions of (4.3).

Let f and g be quasicorformal mappings of a domain A with complex
dilatations u, and u,. D rect computation yields the transformation formula

#O - (2@
1= ()t (2) (Iag(z)i) » (=40) 4.4)

valid for almost all ze A, and hence for almost all { € g(A).

ﬂfog"'(C) =

Theorem 4.2 (Uniqueness Theorem). Let f and g be quasiconformal mappings
of a domain A whose complex dilatations agrce a.e. in A. Then fog™ is a
conformal mapping. .
Proor. By (4.4), the complex dilatation of fog™ vanishes a.e. From Theo-
rem 3.5 we deduce that fog™' is 1-quasiconformal. Hence, by Theorem 1.1,

it is conformal. T a

Conversely, if fog™! is conformal, we conclude fron: (4.4) that f and g have
the same complex dilatation.



4. Beltrami Differential Equation \ 25

4.3. Singular Integrals

The Uniqueness theorem says that a quasiconformal mapping of the plane is
determined by its complex dilatation u up to an arbitrary Mdbius trans-
formation. It follows that a suitably normalized mapping is uniquely deter-
mined by u. We shall now show that, by use of singular integrals, it is possible
to derive a formula which gives the values of a normalized quasiconformal
mapping in terms of u. -

Let f be a function with L‘-denvan{ves in a domain 4 of the { = & + in-
plane and D, D c A, a Jordan domain with a rectifiable boundary curve.
Application of Green’s formula yiel s f generalized Cauchy integral formula
([LV], p. 155)

f()--l—“ SO, —-” af(c’dgd zeD. @.5)

pt —z

The first term on the right, a Cauchy integral, defines an analytic functlon
in D. We conclude, in passing, that a_function f with L'-derivatives in A is
analytic if of =C a.e. in A. The second term on the right in (4.5) is to be
understood as a Cauchy principal valug.

Suppose that f has L!-derivatives in the complex plane C and that f(z) - 0
as z — o0. If we take D = {{||{| < R} and let R — oo, the first term on the
right-hand side of (4.5) tends to zero fon every fixed z. With the notation

To(z) = —— J ¢ “’(C) (4.6)
n)Jol —
we then obtain from (4.5) .
f= Tﬁf.\ ’ @7

Assume, for a moment, that @ in (4.6) bebngs to class Cg° in the complex
plane, i.e,, w is infinitely many times dlﬂ'erentlable and has a bounded sup-
port. Straightforward computation then shows that

\
0Tw = Ho '-\ . 4.3)
([LV], pp. 155-157), where

1 w(c)
Hw(z) = I I T= z)z

the integral again being defined as a Cauchy p cipal value. The linear
operator H is called the Hilbert transformation. We also see that

oTw = w, \

that the operators 0 and d commute with T and H, and that Tw and Ho
belong to C* and are analytic outside the support of @ (!:LV], p. 157).

The Hilbert transformation can be extended as a bounded operator to LP,
1 < p < o0. One first proves that if we Cy, there exists g constant 4,, not

4
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depending on w, such that
lHoll, < A,ll@ll,. 4.9)

This is called the Calderén-Zygmund inequality; proofs are given, apart
from the original paper by Calderén and Zygmund (1952), in Veklﬁ [1l,
Ahlfors [5] and Stein [1]. Since Cg’ is dense in L”? and L? is complete, we can
use (4.9) to extend the Hilbert transformation to the whole space L”. Inequa-
lity (4.9) then holds for every we L? (cf. [LV]; p. 159).

Using (4.9) we deduce that (4.8) holds a.e. for every we L? (cf. [LV]), p. 160)
For applications it is also important to note that the norm

IHY, = sup{| Ho|,| |}, = 1}

depends continuously on p (Ahlfors [5], Dunford—Schwartz [1]).

The special case p = 2 is much easier to handle than a general p. A rather
clemengary integration shows that Hilbert transformation is an isometry in
L? ([LV], p. 157). In particular, | H|, = 1.

4.4. Representation of Quasiconformal Mappings

We shall now apply the results of 4.3 tg quasiconformal mappings. Let f be
a quasiconformal mapping of the plane whose complex dilatation u has a
bounded support. Wishing to represent f by means of u, we introduce a
normalization so that u determines f uniquely.

We first require that f(co) = co. Near infinity, where f is conformal we
then have f(z) = Az + B + negative powers of z. If we set A = 1, B =0, then
f is uniquely determined by u.

In a neighborhood of co we thus have

J@) =2+ 2 b,z™".
n=] '
It follows that the partial derivatives of the function z — f(z) — z, which are
locally in L2, are L*-integrable over the plane. We conclude from (4.7) and
from the generalized formula (4.8) that 3f = 1 + HOf a.e. Since df = udf a.e.
we thus have
of = u+ uHof ae. : (4.10) -

This integral equation can be solved by the customary iteration prooedqié.
The Neumann series obtained converges in L2, but it also converges in L?,
p > 2, if p satisfies the condition

fulloliHI, < 1. @4.11)
More expllelt]y, suppose that u(z) = 0 if |z| > R, and define inductively

@)= =uHep,,, n=23,. 4.12)
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Then
e, £ RRA)YVPIH 1L (el o) -(4.13)
Hence, under condition (4.11),
lim 3, ¢, = &, - @4.14)
Ao i=l

and it is a function in L?.
This solution gives the desired representation formula for f(z), first estab-
lished by Bojarski in 1955.

Theorem 4.3. Let f be a quasiconformal mapping of the plane whose com-
plex dilatation p has a bounded support and which satisfies the condition
lim,. . (f(z) — 2) = 0. Then

f@)=z+ ‘2 To(z),

where @, is defined by (4.12). The series is absolutely and uniformly convergent
in the plane.

ProOF. By (4.7) we have f(2) = z + T9f(2). By (4-14), Tof(2) = (FY, @)(2). For
p > 2, it follows from Holder’s inequality that | Tgy(z)! < c, |l @il ,, where the
constant c, depends only on p and R. Therefore, by (4.13),

| Tod2)l < cy(1H I pllo), 4.15)

where ¢, depends only on p and R. (For this crucial estimate, (4.10) must be
solved in a space L? with p > 2.) We conclude from (4.15) that

(7§ 0)o= £ Tete
and that the series on the right is absolutely and uniformly convergent. (3

We proved above that under condition (4.11), 3f € L? locally. From df =
1 + Hof and (4.9) we see that the same holds for df. It follows that the partial
derivatives of a quasiconformal mapping are locally in L? for same p > 2.
([LV], p. 215). The p will, of course, depend on | u|| .

4.5. Existence Theorem

In proving Theorem 4.3 we started from a quasiconformal mapping which
gave the function u. The following result, fundamental in the theory of quasi-
conformal mappings, shows that we could equally well have started from a
measurable function u. . .
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Theorem 4.4 (Existence Theorem). Let u be a measurable function in a domain
" A with |||, < Y. Then there is a quasiconformal mapping of A whose complex
dilatation agrees with*u a.e.

The proof can be divided into three parts. One first shows that if ue Cg,
the Beltrami equation dw = udw has a locally injective solution. This can be
so constructed that a topological argument shows it to be in fact globally
injective. Another way to obtain from locally injective solutions a globally
injective one is to use the general uniformization theorem for Riemann sur-
faces.(Theorem 1V.3.3). Finally, we get a general solution by approximating
the given y with C®-functions (cf. Theorem 4.5 below). For details of the
proof and historical remarks we refer the teader to Lehto {4], p. 136. The
proof in [LV], p. 191, employs step functions, while Vekua [1] makes use of
the explicit expression in Theorem 4.3.

For continuous p, the solutions of the Beltrami equation are not neces-
sarily continuously differentiable. In other words, for a diffeomorphic quasi-
conformal mapping its complex dilatation, which is continuous, cannot be
prescribed as an arbitrary continuous function u with | #||, < 1. This is one
more reason to generalize the classical Grotzsch definition of quasiconfor-
mality (cf. the remark made at the end of 3.2).

If 4 is a littl® more regular than just continuous, we are back in the classical
situation. For instance, a quasiconformal mapping whose complex dilatation is
locally Holder continuous is a diffeomorphism. (See [LV], p. 235, where this
conclusion is drawn from a still weaker condition on pu.)

Theorem 4.4 gives immediately a striking generalizati n of the Riemann
mapping theorem: Let A and B be simply connected dom ins in the extended
plane whose boundaries consist of more than one point, and let u be a mea-
surable function in A with | ul|, < 1. Then there is a quasiconformal mapping
of A onto B whose complex dilatation agrees with u a.e.

In fact, by Theorem 4.4 there exists a quasiconformal mapping f of A with
complex dilatation equal to x a.e. The boundary of the simply connected
domain f(A) consists of more than one point. Hence, by Riemann’s mapping
theorem, there is a conformal map g of f(A4) onto B. Then g o f has the desired
properties.

4.6. Convergence of Complex Dilatations

It is important in proving Theorem 4.4 that we can initially consider a
smooth y and then obtain the general result by approximation. Let us now
study more closely what relations there are between the convergence of
mappings and that of their complex dilatations.

We first remark that convergence of mappings need not imply convergence
of their complex dilatations. More precisely, let (f,) be a sequence of quasi-
conformal mappings of a domain 4. We suppose that the complex dilatations
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#, of f, satisfy the comﬁhon Nl Sk <1 and that f, converges locally
uniformly in 4 towards g’g_uanconformal mapping f with complex dilatation

p. By Theorem 2.2,° m <k, but otherwise there need be no connection
between the functigie ji,and s, i, the local mapping properties of f, and f
may be quite different (see [V, p. 186).

The situation changw if the functlons H, cOnverge.

Tlleorem 45. Let (f,) be a sequence of K-quasiconformal mappings of A
which converges locally uniformly to a quasiconformal mapping f with com-
plex dilatation p. If the complex dilatations p, of f, tend to a limit a.e., then
him p,(2) = p(2) a.e.

This result ([LV], p. 187) is needed to take the third step in the proof of
Theorem 4.4 sketched above. It can also be used to prove that an arbitrary
quasiconformal mapping can be approximated by smooth quasiconformal
mappings (cf. [LV], p. 207).

The following complement to Theorem 4.5 shows that convergence of
complex dilatations implies convergence of the corresponding normalized
mappings.

Theorem 4.6. Let u and p,,n =1, 2, ..., be measurable functions in the plane
such tha