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IntroductiOn

I.

'Fhe theory of Teicbmüller spaces studies the different conformal structures
on a After the iittroduction of quasiconformal mappings
into the the theory can be said to deal with classes consisting of
quasiôonfonnal mappings of a Riemann surface which are homotopic
modulo conformal mappings.

It was Teichmüller who noticed the deep connection between quasicon-
formal mappings and function theory. He also discovered that the theory
of Tcichmüller spaces is intimately connected with quadratic diffei1entials.
Teichmüller ([1], {2]) proved that on a compact Riemann surfac, of genus
greater than one, every holomorphic quadratic differential a quasi-
conformal mapping which is a unique extremal in its homotopy class in the
sense that it has the smallest deviation from conformal mappings. He also
showed that all extremals are obtained in this manner. It follows that the
Teichmüller space of a compact Riemanu surface of genus p> I is hómeó-
morphic to the euclidean space tR66.

TeichmUller's proofs, often sketchy and with conjectures, were
put ona by Ahifors also introduced a more flexible defini-
tion for quasiconfOrmal mappings. paper of Ahifors revived interest in
Teichmiiller's work and gave rise to a study of the general
of quasiconfonnalmáppings iii the plane. -

Another approach to the Teichmfihler theory, initiated by Bers in the any
sixties, leads to quadratic differentials an entirely different manier. :Thjs
method is more in that it can also beapplied to non-cdfhpa&
mann surfacest The quadratic differentials now &hwartian of
confdrmal of quasicohformal thappings considered on the uM-
versal covering the extensions being obtained by use of the
differential S



2 Introduction

The development of the theory of Teichmüller spaces along these lines
gives rise to several interesting problems which belong to the classical theory
of univalent analytic functions. Conseqoently, in the early seventies' a special
branch of the theory of univalent functions, often studied without any con-
nections to Riemann surfaces, began to take shape.

The interplay between the theory of univalent functions and the theory
of Teichmuller spaces is the maip theme of this monograph. We do give a
proof of the above mentioned classical uniqueness and existence theorems of
Teichmüller and discuss their consequences. But the emphasis is on the study
of the repercussions of Bers's method, with attention both to univalent func-
tions and to Teichmüller spaces. It follows that even though the topics dealt
with provide an introduction to the Teichmüller theory, they leave aside
many of its important aspects. AbikofT's monograph [2] and the surveys of
Bers [10], [I 1], Earle [2], Royden [2], and Kra [2] cover material on Teich-
muller spaces not treated here, and the more algebraic and differential geo-
metric approaches, studied by Grothendieck, Bets, Earle, Thurston and many
others, are not considered.

There is no clearly best way to organize our material. A lot of background
knowledge is needed from the theory of quasiconformal mappings and of
Riemann surfaces. A particular difficulty is caused by the fact that the inter-
action between univalent functions and Teichmülier spaces works in both
directions.

Chapter I is devoted to an exposition of quasiconformal. mappings. We
have tried to collect here all the basic results that will be needed later. For
detailed proofs we )lsually refer to the monograph Lehto—Virtanen [1]. The
exceptions are cases where a brief proof can be easily presented or where we
have preferred to use different arguments or, of course, where no precise
reference can be given.

Chapter 11 deals with problems of univalent functions which have their
origin in the TeichmUller theory. The leading theme is the interrelation be-
tween the Schwarzian derivative of an analytic function and the complex
dilatation of its quasicoñforinal extension. A large fraction of the results of
Chapter II comes into direct use in Chapter III concerning the universal
Teichmüller space. This largest and, in many ways, simplest Teichmüller
space links univalent analytic functions dnd general Teichmüller spaces.

A presentation of the material contained in Chapters II and UI paralleling
the introduction of the Teichniüller space of an arbitrary Riemann surface
would perhaps have provided a better motivation for some definitions and
theorems in these two chapters. But we hope that the arrangement chosen
makes the theory of Teichmihler spaces of Riemann surfaces in Chapter V
more transparent, as the required hard analysis has by then largely been dealt
with. Also, we clear division of the book into two parts: Chapters 1,
II and III concern complex analysis in the plane and form an independent
entity even without the rest of the book, while Chapters IV and V are related
to Riemann surfaces.



Introduction 3

The philosophy of Chapter IV on Riemann surfaces is much the same as
that of Chapter I. The results needed later are formulated, and for proofs
references are usually made to the standard monographs of Ahlfors—Sario
[1], Lehner [1], and Springer [1]. An exception is the rather extensive treat-
ment of holomorphic quadratic differentials, which are needed in the proof of
Teichmüller's uniqueness theorem. Here we have largely utilized Strebel's
monograph [6].

Finally, after all the preparations In Chapters I—IV, Teichmüller spaces of
Riemann surfaces are taken up in Chapter V. We first discuss their various
characterizations and, guided by the results of Chapter III, develop their
general theory. After this, special attention is paid to Teichmüller spaces of
compact surfaces. The torus is first treated separately and then, via the study
of extremal quasiconformal mappings, compact surfaces of higher genus are
discussed.

Each chapter begins with an introduction which gives a summary of its
contents. The chapters are divided into sections which consist of numbered
subsections. The references, such as 1.2.3, are made with respect to this three-
fold division. In references within a chapter, the first number is omitted.

In this book, the approach to the theory of Teichmüller spaces is based on
classical complex analysis. We expect the reader to be familiar with the
theory of analytic functions at the level of, say, Ahlfors's standard textbook
"Complex Analysis". Some basic notions of general topology, measure and
integration theory andfunctional analysis are also used without explana-
tions. Some acquaintance with quasiconformal mappings and Riemann sur-
faces would be helpful, but is not meant to be a necessary condition for
comprehending the text.



CHAPTER 1

Quasiconformal Mappings

Intioduction to Chapter I
Quasiconformal mappings are an essential part of the contents of this book.
They appear in basic definitions and theorems, and serve as a tool over and
over again.

Sections 1—4 of Chapter I aim at giving the reader a quick survey of the
main features of the theory of quasiconformal mappings n the plane. Com-
plete proofs are usually omitted. For the details, an effort was made to give
precise references to the literature, in most cases to the monograph Lehto—
Virtanen [11.

Section 1 introduces certain conformal invariants. The Poincaró metric is
repeatedly used later, and conformal modules of path families appear in the
characterizations of quasiconformality.

In section 2, quasiconformality is defined by means of the maximal dilata-
tion of a homeomorphism. Certain compactness and distortion theorems,
closely related to this definition, are considered. Section 3 starts with the
classical definition of quasiconformal diffeomorphisms and explains the con-

'nections between various arid analytic properties of quasiconfor-
mal mappings.

Section 4 is concerned with the characterization of quasiconforrnal map-
as homeomorphic. solutions of Reltrami equations. Com-

plex dilatation, a central notion throughout our presentation, is introduced,
and the basic theorems about the existence, uniqueness and representation of
a quasiconformal mapping with prescribed complex dilatation are discussed.

The rcrnainiftg two sections are more than sections 1 --4, and
their contents are more clearly determined by subsequent applications. Sec-
tion 5 is devoted to the now classical problem of extending a homeomorphic
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self-mapping of the real axis to a self-mapping of the half-
plane. The solution is used later in several contexts.

Section. 6 deals with quasidisca. Along with complex dilaistion and
the Schwarzian derivative the notion of a quasidisc is a. trademark of this
book. For this reason, we have given a fairly comprehensive account of their'
numerous geometric properties, in most cases with detailed proofs.

'1. ConfOrmal Invar ants

1.1. Hyperbo!ic Metric

In the firstthree chaptets of this monograph, we shall be primarily
with mappings whose domain and rangó are subsets of the Unless
otherwise stated, we understand by "plane" the Riemann sphere and often
use the spherical metric to remove the special position of the point at infinity.

In addition to the euclidean and spherical metrics, we shalt repeatedly
avail of a conformally invariant hyperbolic metric. In "unit
disc D = {zl 121 < 1) one arrives at this metric by considering Möbius trans-
formations z w,

_____

16
ZZ0

— ..,

which map D onto itseli By there are no other conformal
self-mappings of 15. It follows that the differential :

Fdzl

1_1z12

defines a'metric which is undet the group of conforthal maØpings of
D onto itself.

The shortest curve in this metric joining two points and 22 of D is the
circular arc which is orthogonal to the unit The hyperbolic distance
between z1 and z2 is given by the formula

1 I'1 Z21
.

(Li)
,. 1

The Riemann mapping theorem says that every simply connected
A of the plane with more than one boundary point'is conformally equivalent
to the unit disc. Let f: 'A D be a-conformal mapping, and

If'(z)l
,,Az)

Then the differential
71A(Z)IdZl
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defines the hyperbolic (or Poincaré) metric of A. The function which is
called the Poincaré density of A, is well defined, for it does not depend on the
particular choice of the mappingf. In the upper half-plane, = 1/(2 Im z).
The geodesics. which are preserved under conformal mappings, are called
hyperbolic segments.

The Poincaré density is monotonic with respect to the domain: If A1 is a
simply connected subdomain of A and z e A1, then

� q4,(z). (1.2)

For let f and 11 be conformal maps of A and A1 onto the unit disc D, both
vanishing at z. Then q4(z) = (f'(z)I, = and application of Sch-
warz's lemma to the function fofr1 yieldi(1.2).

Similar reasoning gives an upper bound for in terms of the eucidean
distance d(z, from z to the boundary of A. Now we apply Schwarz's
lemma to the function —0 f(z + d(z, ÔA)C) and obtain

• �
d(z,ÔA)

. (1.3)

For domains A not containing oo we also have the lower bound

(1:4)

This is proved by means of the Koebe one-quarter theorem (Nehari [2],
p. 214): If f is a conformal mapping of the unit disc D with f(O) = 0, f'(O) =
1, f(z) then d(O,8f(D)) � 1/4. We apply this to the function w
(g(w) — z)/g'(O), where g is a conformal mapping of I) onto A with g(0) = z.

Because = 1/ Ig'(O)I, the inequality (1.4) follows. Both estimates (1.3) and
(1.4) are sharp.

There is another lower estimate for the Poincaré density which we shall
need later. Let A be a simply connected domain and w1, w2 finite points
outside A. Then

vw7j
(1.5)

for every zeA. To prove (1.5) we observe that z —.f(z) =(z — w1)/(z — w2)
maps A onto a domain A' which does not contain 0 or Hence, by the
conformal invariance of the hyperbolic metric and by (1.4),

fIA(Z) 'IA.(f(Z)) If(z)I � 4d(f(z), ÔA')

Since d(f(z),8A') � If(z)I, the inequality (1.5) follows.
The hyperbolic metric can be transferred by means of conformal mappings

to multiply connected plane domains with more than two boundary points
and even to most Riemann surfaces. This will be explained in JV.3.6. Finally,
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in V.9.6 we define the hyperbolic metric on an arbitrary complex analytic
manifold.

1.2. Module of a Quadrilateral

A central theme in what follows is to measure in quantitative terms the
deviation of a homeomorphism from a conformal mapping. A natural
way to do this is to study the change of some conformal invariant under
homeomorphisms.

In 1.6 we shall exhibit a general method to produce conformal invanants
which are appropriate for this purpose. Hyperbolic distance is not well suited
to this objective, whereas two other special invariants, the module of a quad-
rilateral and that of a ring domain, have turned out to be particularly im-
portant. We shall first discuss the case of a quadrilateral.

A Jordan curve is the image of a circle under a homeomorphism of the
plane. A domain whose boundary is a Jordan curve is called a Jordan domain.

Let f be a conformal mapping of a disc D onto a domain A. Suppose that
A iS locally connected at every point z of its boundary ÔÁ, i.e., that every
neighborhood U o z in the plane contains a neighborhood V of z, such that
V A is connectea. Under this topological condition on A, a standard length-
area argument yields the important result thatf can be extended to a homeo-
morphism between the closures of D and A. It follows, in partièular, that 0A
is a Jordan curve (Newman f1J, p. 173).

Conversely, a Jordan domain is locally connected at every boundary point.
We conclude, that a conformal mapping of a Jordan domain onto another
Jordan domain has a homeomorphic extension to the boundary, and hence
to the whole plane. For such a mapping, the iniages of three boundary points
can, modulo orientation, be prescribed arbitrarily on the boundary of the
image domain. In contrast, four points on the boundary of a Jordan domain
determine a conformal module, an observatiàn we shall now make precise.

A quadrilateral Q(z1,z2,z3,z4) is a Joidan domain and a sequence of four
points z1, z2, z3, Z4 on the boundary ÔQ following each other so as to
determine a positive orientation of 0Q with respect to Q. The arcs (z1,z2),
(z2,z3), (z3,z4) and (z4,z1) are called the sides of the quadrilateral -

Let f be a conformal mapping of Q onto a eucidean rectangle R. If the
boundary correspondence is such that f maps the four distinguished points
z1, z2,z3, z4 to the vertices of R, then the mapping f is said to be canonical,
and R is called a canonical rectangle of Q(z1,z2,z3,z4). Itie not difficult to
prove that every quadrilateral possesses a canonical mapping and that the
canonical mapping Is uniquely determined up to similarity transformations.

The existence can be shown if we first map Q conformally onto the upper
half-plane, arrange the four distinguished points in pairwise symmetric posi-
tions with respect to the origin, and finally perform a conformal mapping by
means of a suitable elliptic integral. The uniqueness part follows directly from
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the reflection principle. (For the details, see Lehto—Virtanen [1]; for this
monograph, ro which several references will be made in Chapter 1, we thall
henceforth use the abbreviation

Now suppose that R = (x + <x <a,O <y <b} is a canonical rect-
angle of Q(z1 ,z2, 23, z4) and that the first z2) corresponds to the line
segment 0 � x � a. The number a/b, which does not depend on the parti-
cular choice of the canonical rectangle, is the (conformal) module of the
quadrilateral z2, z3, 24). We shall use the notation

M(Q(z1,z2,z3,z4)) = a/b

for thc module. It follows from the definition that M(Q(z1 ,22, z3,

1/M(Q(z2, z3, z4, Zi))..
From the definition it is also clear that the module of a quadrilateral is

conformally invariant, i.e., if f is a conformal mapping of a domain A and
Q(z1,z2,z3,z4) is a quadrilateral such that Q A and 1(Q) is a Jordan do-
main, then M(Q(z1, z2,23,z4)) = M(f(Q)(f(z1),f(z2),f(z3),f(z4))).

1.3. Length-Area Method.

It is possible to arrive at the notion of the module of a quadrilateral through
an extremal problem, by use of a length-area method. This approach has
turned out to be extremely useful and it leads to far-reaching generalizations,
even beyond complex analysis. In the general situation we shall discuss it in
1.6. I.n explicit form the idea was announced by A. Beurling in the 1946
Scandinavian Congress of Mathematicians in Copenhagen, and a few years
later it was used systematically for the first time by L. Ahifors and A. Beurlin&

In order to arrive at this characterization of the module we consider the
canonical mapping f of the quadrilateral Q(z1,z2,z3,z4) onto the rectangle
R={u+ivfO<u<a,0<v<b}.Then

If =
J.JQ

Let r be the family of all locally rectifiable Jordan arcs in Q which join the
sides (z1 , z2) and (z3, z4). Then

I If'(z)IIdzI

for every y is the inverse image of a vertical line segment
of R joining its horizontal sides. Hence

JJ

_____

M(Q(z11z2,z3,z4))= — (1.6)

yer
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We can get rid of the canonical mapping f if we introduce the family P
whose elements p arc non-negative Borel-measurable functions in Q and
satisfy the condition L p(z)ldzI � I for every y eF. With the notation

m,(Q)=J$p2dxdY,

we then have
M(Q(z1,z2,z3,z4)) = inf (1.7)

PEP

This basic formula can be proved by a length-area reasoning. Define for every
given p e P a function Pt in the canonical rectangle R by of) Lt'I = p.
Then, by Fubini's theorem and Schwarz's inequality,

= IL �: du(J' Pi(U + iv)dv).

The last integral at right is taken over a line segment whose preimage is in r.
Therefore, the integral is � 1, and so � a/b M(Q(z1,z2,z3,z4)). To
complete the proof we note that p If'I/b belongs, to P. By (1.6) this is an
extremal function for which = M(Q(z1, z2, z3, z4)).

1.4. Rengel's Inequality

The power of the characterization (1.7) is that it yields automatically upper
estimates: M(Q(z1,z2,z3,z4)) � m,(Q) for any pEP. An important applica-
tion is obtained if we choose p to be the euclidean metric. Let denote the
euclidean distance of the sides z2) and (z3, z4) in Q, and m the euclidean
area. Then (1.7) gives Rengel's inequality

M(Q(z1,z2,z3,z4)) (1.8)

It is not difficult to prove that equality holds if and only if Q(z1, z2, 23, z4) is

a rectangle with its usual vertices ([LV), p. 22).
Using (1.8) we can easily prove that the module depends continuously on

the quadrilateral. For a precise formulation of the result let us consider a•
sequence of quadrilaterals n 1, 2,.... Suppose that this
sequence converges to Q(z1,z2,z3,z4) from inside, i.e., Q for every n and
to every r > 0 there corresponds an ; such that for n � every point of the
sides of has a spherical distance <e from the corresponding
sides of Q(z1,z2,z3,z4). Then

Jim zfl)) = M(Q(z1, 22, Z3, Z4)).

To prove this, we only need to carry out a canonical mapping of Q(z1,z2,
z3, z4) and apply Rengel's inequality to the image of zr).
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Rengel's inequality also makes it possible to characterize conformality in
terms of the modules of quadrilaterals, without any a priori differentiability.

Theorem 1.1. Let f: A —' A' be a sense-preserving homeomorphism which leaves
invariant the modules of the quadrilaterals of the domain A. Then f is conformal.

sketch a proof. Map a quadrilateral of A and its image in A' canonically
Onto identical rectangles R and R' whose sides are parallel to the coordinate
axes. Given a point z = x + ly of R, we consider the two rectangles R1 and
R2 onto which R is divided by the vertical line through z. Since all modules
remain invariant, it follows from Rengel's inequality, with regard to the
possibility for equality, that the images of R1 and R2 in R' are also rectangles
(cf. [LV), p. 29). But then the real part of the image of z must be x. A similar
argument shows that the part of z does not change either. Thus the
induced mapping of R onto R' is the identity, and the conformality of f
follows.

Module of a Ring Domain

A doubly connected domain in the extended plane is called a ring domain.
Unlike simply connected domains, which fall into three conformal equiva-
lence classes, ring domains possess infinitely many equivalence
classes. A counterpart for Riemann's mapping theorem says that a ring
domain can always be mapped conformally onto an annulus r < jzI <R,
where r � 0, R � 00. it follows that every ring domain B is conforinally
equivalent to one of the following annuli: 100 < < < 00,30
I <R, R < 00. In case 30 the number R determines the equivalence
class, and

M(B) log R

is called the module of B. In cases 1° and 2° the module of B is said to be
infinite. A conformal mapping of B onto an annulus is called a canonical
mapping of B.

Just as in the case of quadrilaterals, the module of ring domains can also
be deflated without reference to canonical mappings. r now be the family
of Jordan curves in a ring domain B which separate the bound-

As before, P is the family of all non-negative Borel-
measurable functions in B with � I for every ye!'. Then

M(B) = 2n inf
,cP

By use of this formula, many geometrically more or less obvious state-
ments can be rigorously founded. We list here some applications. The first
result says that the module cannot be large if neither of the boundary corn-
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ponents is small in the spherical metric: Let B be a ring domain which sepa-
rates the points a1, b1 from the points a2, b2. If the spherical distance between
a and i = 1, 2, is �b, then

M(B) � ,t2/2c52 (1.9)

The second estimate shows that if the boundary components are close to
each other and none of them is small, then the module is small. More pre-
cisely: Let B be a ring domain whose boundary components have spherical
diameters >5 and a mutual spherical distance <e <5. Then

M(B) � n2/log (1.10)

For the proofs of(1.9) and (1.10), see [LV], p. 34.
The third inequality solves an extremal problem. We introduce the Grötzsch

ring domain whose boundary components are the unit circle and the line
segment {xIO � x � r}, 0 < r < 1; let denote its module. If B is a ring
domain separating the unit circle from the points 0 and r, then

M(B) �

This was proved by Grötzsch in 1928 ([LV], p. 54).
A simple application of the reflection principle shows that the Teichmüller

ring domain B bounded by the line segments -- � x � 0 and x � r2 has the
module

M(B) = + r2))'12). (1.11)

This domain is also connected with an extremal problem: if the ring domain
B separates the points 0 and z1 from the points z2 and then

M(B) � 2,z((1z21/(1z1 I + (1.12)

Inequality (1.12) generalizes a result of Teichmuller; for the proof we refer
to [LV], p. 56.

1.6. Module of a Path Family

We showed above that the modules of quadrilaterals and ring domains can
be defined with the aid of certain path families. We shall now consider the
more general situation in which an arbitrary family of paths is given.

By our terminology, a path is a continuous mapping of an interval into the
plane and a curve the image of the interval under a path. We feel free not to
make a very clear distinction between a path and a curve, if there is no fear
of confusion, e.g., to use the same symbol for a path and its image.

Let A be a domain and r a family of paths in A. We associate with F the
class P of non-negative Borel measurable functions p in A which satisfy the
condition
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�
for every locally rectifiable)' in r; such a p is said to be admissible for F. The
numbcr

M(fl= inf p2dxdy
pEPj JA

is called the module of the path family F.
module of a quadrilateral and of a ring domain are special cases of this

notion, whose properties are studied in [LV], pp. 132- 136.
11.1: A —VA' isa {foylyer}. Itfollows

from the definition of the module that if f is conformal, then M(f(F)) =
M(r), i.e., the module of a path family is conformally invariatu.

2. Geometric Definition of Quasiconformal
Mappings

2.1. Definitions of Quasiconformality

Given a domain A, consider all quadrilaterals Q(z1,z2,z3,z4) with Q c A.
Let J': A A' be a sense-preserving homeomorphism. The number•

M(f(Q)(f(z1 ),f(z2),f(z3),f(z4)))

Q M(Q(z1,z2,z3,z4))

is called the maximal dilatation of f. It is always � 1, because the modules of
Q(z1,z2,z3,z4) and Q(z2,z3,z4,z1)are reciprocals.

Since the module is a conformal invariant, the maximal dilatation of a
conformal mapping is 1. By Theorem 1.1, the converse is also true: if the
maximal dilatation of f is equal to I, then is conformal. From this observa-
tion we arrive conveniently at the notion of quasiconformality.

Definition. A sense-preserving homeomorphism with a finite maximal dilata-
tion is quasiconformal. If the maximal dilatation is bounded by a number K,
the mapping is said to be K-quasiconformal.

This "geometric" definition of quasiconformality was suggested by Pfluger
[1] in 1951, and its first systematic use was by Ahlfors [1] in 1953.

By this terminology, f is I -quasiconformal if and only if I is conformal. If
f is K-quasiconformal, then M(f(Q)) � M(Q)/K for every quadrilateral in
A. A mapping f and its inverse f are simultaneously
From the definition it also follows that if f: A B is K1-quasiconformal and
g: B C is K2-quasiconformal, then g of is K1 K2-quasiconformal.
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The definition of quasiconformality could equally well have been given in
terms of the modules of ring domains: A sense-preserving f of
a domain A is K-quasiconformal if and only ;f the module condiion

M(f(B)) � KM(B) (2.1)

holds for every ring domain B, B c A.
The necessity of the condition can be established easily if the canonical

annulus of B, cut along a line segment joining the boundary components, is
transformed to a rectangle with the of the logarithm. To prove the suf-
ficiency requires somewhat more el&$örate module estimations ([LV], p. 39).

Inequality (2.1) shows that a mapping cannot "blow up"
a point, and the well known on the removability of isolated singu-
larities of conformal mappings be readily generalized ([LV), p. 41):
A K-quasiconforma! mapping of a ;kiomain A with an isolated boundary point
a can be extended to a K-quasiconfor,nal mapping of A u {a}.

We mention here another generalized extension theorem (cf. 1/2): A quasi-
conformal mapping of a Jordan domain onto another Jordan domain can be
extended to a homeomorphism between the closures of the domains. This can be
proved by a modification of the proof for conformal mappings ([LV], p. 42),
or deduced directly from the corresponding result for conformal mappings
by use of Theorem 4.4 (Existence theorem for Beltrami

The modules of quadrilaterals and ring domains, which to charac-
terize quasiconformality, are modules of certain path families. As a matter of
fact, the following general result, proved by Väisälä in 1961, is true.

A K-quasiconformal mappingf of a domain A satisfies the inequality

M(f(F')) � KM(fl (2.2)

for every path family r of A.
Flersch, one of the pioneers in applying curve families to quasiconformal

mappings, asked as early as 1955 in his thesis whether (2.2) could be true for
all path families. At that time, certain "analytic" properties of quasiconformal
mappings, which the proof ([LV], p. 171) seems to require, were not yet
known. These properties will be discussed in section 3. The reason we men-
tion the result (2.2) here is that we could have taken it as a definition for
K-quasiconformality. In a way, a characterization by means of the general
relation (2.2) is more satisfactory than the definition which is based on the
special notion of the module of a quadrilateral. However, we have preferred
to use quadrilaterals, not merely for historical reasons, but also to remain
true to the presentation in the monograph [LV], to which repeated refer-
ences are being made.

2.2. Normal Families of Quasiconformal Mappings

Let us consider a family whose elements are mappings of a plane domain A
into the plane. Such a family is said to be normal if every sequence of its
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elements contains a subsequence which is locally uniformly convergent in A.
To cover the possibility that x lies in A or in the range of the mappings, we
use the spherical metric. If is not there, we can of course switch to the
topologically equivalent euclidean metric.

If a family is equicontinuous, then it is normal. This is the result on which
the proofs for a family to be normal are usually based in complex analysis.
For instance, if the family consists of uniformly bounded analytic functions,
equicontinuity follows immediately from Cauchy's integral formula, and so
normality can be deduced. A generalization of this result, proved by use of
the elliptic modular function, says that if the functions are meromorphic and
omit the same three values, then the family is normal.

Much less is needed for normality if the functions are assumed to be
injective.

Lemma 2.1. Let F be a family of K-quasiccnformal mappings of a domain A.
If every f€ F omits two values which have a mutual spherical distance � d > 0,
then F is equiconrinuous in A.

Paoov. Let s denote the spherical distance. Given an s, 0 < e < d, and
a point z0eA, we consider a ring domain B = {zIö <s(z,z0) < r} with
{zls(z,z0) <r} c A, and ö > 0 so small that M(B)> ic2K/2g2. Let z1
be an arbitrary point in the neighborhood V = {zls(z,z0) <5) of z0.

Let us consider an f F. By assumption, f omits two values a and b with
s(a, b) � d. The ring domain f(B) separates the points f(z0), f(z1) from the
points a. b. If min(d,s(J(z0),f(z1))), it follows from formula (1.9) that
M(f(B)) � This yields and hence the desired estimate s(f(z0),
f(z)) <c whenever z V, for every fE F. 0

Lemma 2.1 yields various criterions for a family to be equicontinuous and
hence normal. The following will come into use several times.

Theorem 2.1. A family F of K -quasiconformal mappings of a domain A is
equicontinuous and nonnal, for three fixed points z1, z2, z3 of A and for
every fe F, the distances are uniformly bounded away from zero
for i,j=

PRooF. By Lemma 2.1, the family F is equicontinuous in i, j =
1, 2, 3, i # j, and hence throughout 4. 0

2.3. Compactness of Quasiconformal Mappings

Let be a sequence of K-quasiconformal mappings of a domain A which
is locally uniformly convergent in A. If the limit function f is not constant, it
must take at least three different values, because it is continuous. It follows
from Theorem 2.1 that the functions constitute an equicontinuous family.
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K-quasiconformal mappings possess the same compactness property as
conformal mappings.

Theorem 2.2. The limit function f of a sequence of K-quasiconformal
mappings of a domain A, locally uniformly convergent in A, is either a con-
stant or a K-quasiconformal mapping.

PROOF. 1ff is a homeomorphism, then it follows easily from the definition of
K-quasiconformality and from the continuity of the module of quadrilaterals
that f is K-quasiconformal ([LV], p. 29). A continuous injective map of an
open set of the plane into the plane is a homeomorphism (Newman [1],
p. 122). Therefore, it is sufficient to show that a non-constant limit function
f is injective. This we can prove, utilizing the fact that the family is
equicontinuous, with the aid of the module estimate (1.10) ([LV3, p. 74). 0

In case every f maps A onto a fixed domain A', more can be said about
the limit function.

Theorem 2.3. Let A be a domain with at least two boundary points and
(fm) a sequence of K-quasiconformal mappings of A onto a fixed domain
A'. If the sequence (fN) converges in A, then the limit function is either a
K-quasiconformal mapping of A onto A', or a mapping of A onto a boundary
point of A'.

Here we need not assume that is locally uniformly convergent, because
we conclude from Lemma 2.1 that is a normal family. The theorem
follows from equicontinuity and normal family arguments ([LV], p. 78).

In 4.6 we shall study the convergence of K-quasiconformal mappings f,,
more closely. It turns out that, even though the mappings f, tend uniformly
towards a K-quasiconformal limit f, the local mapping properties off and
the approximating functions f,, may be quite different.

2.4. A Distortion Function

In later applications we shall often encounter a distortion function which we
shall now introduce, starting from its simple geometric interpretation.

Let F be the family of K-quasiconformal mappings of the plane which map
the real axis onto itself and fix the points —1,0 and x. By Theorem 2.1, F is
a normal family, and so

= max{f(1)jfeF} (2.3)

exists. This defines our distortion function for which we shall now derive a
more explicit expression.

Consider the quadrilateral H(— 1,0,1, where H is the upper half-plane.
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The Möbius transformation z —.(1 + z)/(1 — z) maps it onto the quadri-
1, — 1). Hence, these two quadrilaterals have the same module.

On the hand, the modules are reciprocal, and so M(H(— 1,0,1, co)) =
M(H(0, 1,c4 —1))= 1.

Let us an feF and write t = f(1). We form the Teichmuller ring B
by the line segments —1 � x � 0 and x � t. If B is conformally

equivalent to the annulus A = (ill <IzI <R}, then the canonical mapping
of B can be so chosen that the upper half of B is .conformally equivalent to

upper hail of A. By applying the mapping z —' log z we conclude that

M(H(0, t, — 1)) =

M(B) f is K-quasiconformal,
M(H(0, t, — 1)) � KM(H(O, 1, co, — 1)) = K. if we combine all these esti-
mates, we obtain

t=f(1)�(1r1(irK/2))2—1. (2.4)

In order to show that there is an f for which equality holds, we fIrst make
a general remark: Let f be a homeomorphism of a domain A and I a closed
line segment which lies in A with the possible exception of its endpoints. Then
f has the same maxima! dilatation A and, in A\I. This can be proved by
means of Rengel's inequality ([LV], p. 45), or by making use of the analytic
characterization of quasiconformality which will be given in 3.5. It follows
that the reflection principle for conformal mappings generalizes as such for
K-quasiconfonnal mappings. In particular, a K-quasiconformal self-mapping
of the upper half-plane can be extended by reflection in the real axis to a
K-quasiconformal mapping of the plane.

Let us now return to (2.4). Let 11 be the canonical mapping of the quadri-
lateral H(0, 1,00, — 1) onto the square Q(O, 1,1 + i,i), the affine stretching
x + iy Kx + iy, and 12 the canonical mapping of H(0, t, 00, —1) onto the
rectangle R(O, K, K + i, i). Then the mapping f which is equal to o ofj
in H its mirror iiage in the lower hall-plane is K-quasiconforinal in the
plane. For this f, equality holds in (2.4). It follows that

2(K) = 1.

From the obvious result 2(1) = 1 we conclude that

= n/2. (2.5)

Typically the reasoning goes in the other direction, in that we retrieve in-
formation about 2(K) by estimating p(r). For instance, we obtain in this way

2(K) = — + o(l),

with a positive remainder term o(1) as K 00 ([LV]. p. 82). Also,

1(K) � exp(4.39(K — 1))

(Beurling—Ahifors [1]), which tells about the behavior of 2(K) as K -+ 1. In
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particular, we see that A. is continuous at K 1; continuity at an arbitrary K
follows from the continuity of r —, p(r).

2.5. Circular Distortion

A conformal mapping of the plane which fixes 0 and maps the family
of circles centered at the ongin onto Under normalized K-quasicon-
formal mappings the images of these circles have "bounded distortion". To
be precise:

Theorem 2.4.. Let f be a K.quasiconf"ormal mapping of the plane fixing 0 and
ri.. Then for every r> 0,

� c(K), (2.7)
min,jf(re")I

where the constant c(K) depends only on K.

There are many ways to prove this important theorem. A normal family
argument shows that a finite bound c(K) must exist. A quantitative esti-
mate is obtained as follows. Let and z be points on the circle

I =
r at which the minimum and maximum of lf(z)( are attained. For B' =
{wlmin,If(re1')I <Iwl <max,If(re")I}, let B be the inverse image of B'.
Then B separates the points 0, z1 from the points z2, cO. Hence, by (1.12)
and (2.5),

M(B) � 2,t((1z11/(Iz11 + 1221))') = ic.

Consequently, M(B') � KM(B) � irK, and it follows that (2.7) holds for
c(K) =

The sharp bound in (2.7) is A(K) (proved by in
1959). This follows from the fact that, as a generalization of (2.3), ).(K) is the
maximum of tf(z)I on the unit circle in the family of K-quasiconformal
mappings of the plane which fix —1,0 and oo but which are not required to
map the real axis onto itself. There seems to be no easy way to prove this'
result.

Theorem 2.4, in a form in which the value of the sharp bound is not
needed, will render us valuable Service in section 6 when we study the geo-
metry of quasidiscs. With these applications in irnad, we draw here a further
conclusion from (2.7).

Letf be a K-quasiconformal mapping of the planlxing We infer from
(2.7) that if Iz2 — zol � Izj — 201, then

lf(z2)—f(z0)I �c(K)If(z1)—f(zo)I. (2.8)

The following generalization is also readily obtained. If 122 — 201 nIz1 — zol,
where n � 1 is an integer, then
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If(z2)—f(zo)l �nc(Krlf(za)—f(zo)I; (2.9)

In order to prove• this, we denote by k = 0, 1, ..., n, the equidistant
points onthe ray from z0 through z2 for which — I = 1z2 — z01/n; here

= = Z2. By (2.8), � —f(C1—2)l fork =
2,..., n. Hence, by the triangle inequality,

If(Z2) � — f(zo)IEc(K)k — f(z0)1.

By(2.8), 11(C1) — f(zo)I � c(K)lf(z1) — and (2.9) follows.

We conclude this section with the remark that quasiconformality can be
defined by means of the distortion function H,

mai.lf(z +
H(z) = hmsup .

r-'O mm,If(z + re') —

even though we shall not make use of this characterization. A sense-
preserving homeomorphism f of a domain A is .K-quasiconformal if and only
if H is bounded in and H(z) � K almost everywhere in A
([LV], pp. 177—178).

3. Analytic Definition of Quasiconfórmal
Mappings

3.1. Dilatation Quotient

When the definition of quasiconformality in terms of the modules of quadri-
laterals was given in the early fifties, quasiconformal mappings had been
studied and successfully applied in complex analysis for more than two
decades. Historically, the starting point for generalizing conformal mappings
was to consider, not arbitrary sense-preserving homeomorphisms, but dtffeo-
morphisms, i.e., homeomorphisms which with their inverses are continuously
differentiable. We can then generalize the characteristic property of confor-
mal mappings that the derivative is independent of the direction by requiring
that the ratio of the maximum and minimum of the absolute value of the
directed derivatives at a point is uniformly bounded.

We shall now show that this classical definition gives precisely those quasi-
conformal mappings which are diffeomorphic. This local approach using
derivatives is often much more convenient than the definition using modules
of quadrilaterals when the problem is checking the of a
mapping given by an analytic expression.
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To make the above remarks precise, we introduce for a sense-preserving
diffeomorphism f the complex derivatives

and the derivative 8j in the direction

+ rem) — f(z)

Then = and so

max föj(z)( = mm IOJ(z)l = —

The difference IOf(z)I — is positive, because the Jacobian J1 = 18112 —

I Of is positive for a sense-preserving diffeomorphism. We conclude that the
dilatation quotient

D — max1I8jI —

I —

is finite. —

The mapping f is conformal if and only if Of vanishes identically. Then Oj
is independent of we have Of Of = f'. This is equivalent to the dilata-
tion quotient being identically equal to 1.

The dilatation quotient is conformally invariant If g and h are conformal
such that w = h of o g is defined, then direct computation shows

that D,(z) =

3.2. Quasiconformal Diffeomorphisms

For diffeomorphisms quasiconformality can be characterized with the aid of
the dilatation quotient.

Theorem 3.1. Let I: A —, A' be a sense-preserving diffeomorphism with the
property

D1(z) � K

for every z A. Then f is a K-quasiconformal mapping.

PROOF. We pick an arbitrary quadrilateral Q of A. Let w be the mapping
which is induced from the canonical rectangle R(O, M, M + i, i) Of Q onto
the canonical rectangle R'(O, M', M' + I, i) of 1(Q). Because of the conformal
invariance of the dilatation quotient, is also majorized by K. Hence� � KJ,,, and the desired result M' KM follows by use
of a customary length-area reasoning;
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M' = m(R')

I I I

Theorem 3.1 is the classical definition of K-quasiconformality given by
Grötzsch [1] in 1928.

The converse to Theorem 3.! is as follows:

Theorem 3.2. Let f: A A' be a K-quasiconformal mapping. If f is differenti-
able at z0eA,then

max � K mm (3.1)

The idea of the proof is to consider a small square Q centered at z0 and
regard it as a quadrilateral with the vertices at distinguished points. The area
and the distance of the sides of 1(Q) can be approximated by expressions
involving the partial derivatives of f at z0. Application of Rengel's inequality
then yields a lower estimate for M(f(Q)) from which the desired inequality
(3.1) follows. (For details we refer to [LV], p. 50.)

By combining Theorems 3.1 and 3.2 we obtain the following characteriza-
tion for quasiconformal diffeomorphisms: A sense-preserving diffeomorphism
f is K-quasiconformal if and only if the dilatation condition D1(z) � K holds
everywhere.

The class of K-quasiconformal diffeomorphisms does not possess the com-
pactness property of Theorem 2.2. This is one of the reasons for replacing the
classical definition of Grötzsch by the more general one. Another reason will
be discussed in 4.5.

3.3. Absolute Continuity and Differentiability

We shall soon see that an arbitrary quasiconformal mapping of a domain A
is differentiable almost everywhere in A. From Theorem 3.2 it then follows
that the dilatation condition (3.1) is true at almost all points of A. However,
the converse is not true. ii, a sense-preserving homeomorphism I which is
differentiable ac. and satisfies (3.1) a.e. is not necessarily K-quasiconformal.
What is required is a notion of absolute continuity.

A continuous real-valued Iuncüon u is said to be absolutely continuous on
lines (ACL) in tdomain 4 if for each closed rectangle {x + � x � b,
c � y � d } c A, the function x —i u(x + ly) is absolutely continuous on [a, b)
for almost all ye fc, d] and y —. u(x + iy) is absolutely continuous on [c, d]
for almost all xe [a, b). A complex valued function is ACL in A if its real and
imaginary parts are ACL in A.
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It follows from standard theorems of real analysis that a function f which
is ACL A has finite partial derivatives and f, a.e. in A.

Theorem 3.3. A quasiconformal mapping is absolutely continuous on lines.

This result was first established by Strebel (1955) and Mon. A later proof
by Pfluger, which uses Rengel's inequality and a minimum of real analysis, is
presented in [LV], p. 162.

From Theorem 3.3 we conclude that a quasiconformal mapping has finite
partial derivatives a.e. From this we can draw further conclusions by making
use of the following result:

Let I be a complex-valued, continuous and open mapping of a plane domain
A which has finite partial derivatives a.e. in A. Then f is differentiable a.e. in A.

The proof, which is due to Gebring and Lehto (1959), uses the maximum
principleand a standard on the density of point sets ([LV], p. 128).
Application to quasiconformal mappings yields, with regard to Theorem 3.2,
a basic result:

Theorem 3.4. A K-quasiconformal mapping f of a domain A is differentiable
and satisfies the dilatation condition (3.1) almost everywhere in A.

Differentiability a.e. of quasiconformal mappings was first proved by Mon
[I] with the aid of the Rademacher—Stepanofr theorem and Theorem 2.4.

3.4. Generalized Derivatives

The ACL-property, which depends on the coordinate system, becomes much
more useful when combined with local integrability of the derivatives. A
function f is said to possess (generalized) V-derivatives in a domain A, p � 1,
if f is ACL in A and if the partial derivatives f and f,, off are L"-integrable
locally in A. It is also customary to say that the function f then belongs to
the Sobolev space This property is preserved under continuously
differentiable changes of coordinates ([LV], pp. 151—152).

Roughly speaking, classical transformation rules of Calculus between curve
and surface integrals remain valid for functions with V-derivatives. This is
one reason for the importance of this class of functions. (For details and more
information see, e.g., [LV], pp. 143—154 or Lehto [4], pp. 127—131.)

A quasiconformal mapping has L2-derivatives. In order to prove this we first
note that the dilatation condition (3.1) implies the inequality

� KJ(z).

In particular, � KJ(z), < KJ(z) a.e. The Jacobian of an almost
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everywhere differentiable homeomorphism is locally integrable ([LV],
p. 131). Consequently, f and f, are locally L2-integrable.

A homeomorphism with L2-derivinives is absolutely continuous with respect
to two-dimensional Lebesgue measure ([LV], p. 150). Thus quasiconformal
mappings have this property. They carry sets measurable with respect to
two-dimensional measure onto other sets in this class. The formula

I = m(f(E)) (3.2)
JE

holds for every quasiconformal mapping f of a domain A and for every
measurable set E c A. If we apply (3.2) to the inverse mapping f1, we
deduce that for a quasiconformal mapping J(z) > 0 almost everywhere.

The considerations in 4.4 will show that every quasiconformal mapping
has not only L2-derivatives but actually U-derivatives for some p> 2. This
is a much deeper result than the existence of L2-derivatives.

3.5. Analytic Characterization of Quasiconformality

A simple counterexample, constructed with the help of Cantor's function,
shows that a homeomorphism need not be quasiconformal even though it
is differentiable a.e., satisfies (3.1) a.e. with K = 1, has bounded partial de-
rivatives, and is area preserving ([LV], p. 167). What is required is the
ACL-property, but once this is assumed it together with (3.1) guarantees
quasiconformality.

Theorem 3.5. A sense-preserving homeomorphismf of a domain A is K-quasi-
conformal -

1° fisACLinA;
2° � a.e. in A.

PROOF. We first note that being ACL, the mapping has partial de*'atives
a.e. and, as a homeomorphism, is therefore differentiable a.e. Thus condition
2° makes sense. As above, we conclude that f has L2'dcrivatives. After this,
we can follow the proof of Theorem 3.1, apart from obvious modifications.

0
Theorem 3.5 is called the analytic definition of quasiconformality. Appar-

ently different from the equivalent geometric definition, it sheds new light on
the connection with the classical Grötzsch mappings. In the next section we
shall show that the analytic definition can be written in the form of a lifferen-
tial equation. This leads to essentially new problems and results for quasi-
conformal mappings.

Under the additional hypotheses that f is differentiable a.e. and has
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L'-derivatives, Theorem 3.5 was first established by in 1955. Later
Bers and Pfluger relaxed the a priori requirements. Under the above mini-
mal conditions, the theorem was proved by Gehring and Lehto in 1959.
(For references and more details, see [LV], p. 169.)

4. Beltrami Differential Equation

4.1. Complex Dilatation

Inequality (3.1) is a basic property of quasiconformal mappings. The very
natural step to express therein more explicitly the maximum and minimum
of leads to the important notion of complex dilatation and reveals a
connection between the theories of quasiconformal mappings and partial
differential equations.

Let 1: A -, A' be a K-quasiconformal mapping and z e A a point at which
f is differentiable. Since maxIc3jt I = — the
dilatation condition (3.1) is equivalent to the inequality

±
Iôf(z)I. (4.1)

Suppose, in addition, that J1(z)> 0. Then af(z) 0, and we can form the
quotient

3f(z)

The function p. so defined a.e. in A, is called the complex dilatation off. Since
j is continuous, p is a Borel-measurable function, and from (4.1) we see that

Ip(z)I <1. (4.2)

Complex dilatation will play a very central role in our representation. It
has a simple geometric interpretation. At a point z at which p is defined, the
mapping

—÷f(z) + af(z)g — z) + af(z)(C —

is a non-degenerate affine transformation which maps circles centered at z
onto ellipses centered at f(z). The ratio of the major axis to the minor axis of
the image ellipses is equal to (1 + — lp(z)I). *e see that the smaller
Jp(z) is, the less the mapping f deviates from a conformal mapping at the
point z. If p(z) 0, the argument of p(z) determines the direction of maximal
stretching: assumes its maximum when = arg p(z)/2.



24 1. Quasiconformal Mappings

4.2. Qua.siconformal Mappings and the Beltrami Equation

The definition of complex dilatation leads us to consider differential equations

(4.3)

An equation (4.3), where p is measurable and < 1, is called a Beltrami
equation. If f is conformal, p vanishes identically, and (4.3) becomes the
Cauchy-Riemann equation êf 0.

A function f is said to be an Lu-solution of (4.3) in a domain A if f has
V-derivatives and (4.3) holds a.e. in A.

Theorem 4.1. A homeomorphism f is K-quasiconformal if and only if f is an
L2-soluzion of an equation pt3f, where p satisfies (4.2) for almost all z.

PROOF. The necessity follows frdm Theorem 3.4 and the sufficiency from
Theorem 3.5, when we note that p)) <1 implies that f is sense-preserving.

The Beltrami equation has a long history. With a smooth coefficient p, it
was considered in the 1820's by Gauss in connection with the problem of
fjnding isothermal coordinates for a given surface (cf. IV.1.6). As early as
1938, Morrey [1] systematically studied homeomorphic L2-solutions of the
equation (4.3). But it took almost twenty years until in 1957 Bers [1] ob-
served that these solutions are quasiconformal mappings.

In 4.5 it will become apparent that (4.3) always has homeomorphic solu-
tions, i.e., that the complex dilatation of a quasiconformal mapping can be
prescribed almost everywhere. This is a deep result. It is much easier to
handle the question of the uniqueness of the solutions of (4.3).

Let f and g be quasicorformal mappings of a domain A with complex
dilatations and D rect computation yields the transformation formula

=
—

= g(z), (4.4)

valid for almost all z e A, and hence for almost all e g(A).

Theorem 4.2 (Uniqueness Theorem). Let f and g be quasiconformal mappings
of a domain A whose complex dilatations agree a.e. in A. Then is a
conformal mapping. -

PROOF. By (4.4), the complex dilatation of fog' vanishes a.e. From Theo-
rem 3.5 we deduce that is 1-quasiconforinal. Hence, by Theorem 1.1,
it is conformal. 0

Conversely, iffog' is conformal, we conclude from (4.4) thatf and g have
the same complex dilatation.
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4.3. Singular Integrals

The Uniqueness theorem says that a quasiconlormal mapping of the plane is
determined by its complex dilatation up to an arbitrary Möbius trans-
formation. It follows that a suitably normalized mapping is uniquely deter-
mined by p. We shall now show that, by use of singular integrals, it is possible
to derive a formula which gives the values of a normalized' quasiconformal
mapping in terms of p. -

Let f be a function with in a domain A of the = + i,-
plane and D, D A, a Jordan with a rectifiable boundary curve.
Application of Green's formula yiel 4s generalized Cauchy integral formula
([LV], p. 155)

1(z) = I — !!Jj' z D.
—z

The first term on the right, a Cauchp integral, defines an analytic
in D. We conclude, in passing, that afunction f with L'-derivatives in A is
analytic if = C a.e. in A. The second term on the right in (4.5) is to be
understood as a Cauchy principal valup.

Suppose that f has L1-derivatives in the complex plane C and that f(z) -.0
as z co If we take D = <R} let R — oo, the first term on the
right-hand side of (4.5) tends to zero for\ every fixed z. With the notation

Tw(z) = _1-$ f\ (4.6)
Jc\C—Z

we then obtain from (4.5) \f =

Assume, for a moment, that w in (4.6) belongs to class in the complex
plane, i.e., cv is infinitely many times differeMiable and has a bounded sup-
port. Straightforward computation then shows that

c3Tw = Hw (4.8)

([LV], pp. 155—157), where

Hw(z) = — JJc th7,

the integral again being defined as a Cauchy value. The linear
operator H is called the HUbert transformation. We a\so see that

øTw=w, \.
that the operators 3 and Ô commute with T and H, and that To and Hco
belong to and are analytic outside the support of cv p. 157).

The Hubert transformation can be extended as a boun4ed operator to
I <p < co. One first proves that if cv there exists a constant not
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depending on w, such that

� (4.9)

This is called the Calderón—Zygmund inequality; proofs are given, apart
from the original paper by Calderón and Zygmund (1952), in [1],
Ahlfors [53 and Stein [13. Since is dense in L' and is complete, w'è can
use (4.9) to extend the Hilbert transformation to the whole space L". Inequa-
lity (4.9) then holds for every weLt (cf. p. 159).

Using (4.9) we deduce that (4.8) holds i.e. for every we U (cf. p. 160).
For applications it is also important to note that the norm

= IIwII,= 11

depends continuously on p (Ahifors [5], Dunford—Schwartz [1]).
The special case p = 2 is much easier to handle than a general p. A rather

elemen4ary integration shows that Hilbert transforniation is an isometry in
L2 ([LV), p. 157). In particular, IIH 112 = 1.

4.4. Representation of Quasiconformal Mappings

We shall now apply the results of 4.3 to quasiconformal mappings. Let f be
a quasiconformal mapping of the plane whose complex dilatation has a
bounded support. Wishing to represent Y by means of we introduce a
normalization so that ji determines f uniquely.

We first require that f(oo) = Near infinity, where f is conformal, we
then have 1(z) = Az + B + negative powers of z. If we set A = 1,8 = 0, then
f is uniquely determined by

In a neighborhood of cc we thus have

It follows that the partial derivatives of the function z —' f(z) — z, which are
locally in L2, are L2-integrable over the plane. We_conclude from (4.7) and
from the generalized lorinula (4.8) that of = I + JIOf a.e. Since Of = p01 a.e.
we thus have

Of=p+pHOf a.e. (4.10)

This integral equation can be solved by the customary iteration
The Neumann series obtained converges in L2, but it also converges in U,
p> 2, if p satisfies the condition

< 1. (4.11)

More explicitly, suppose that p(z) — 0 if Izi > R, and define inductively

q,1,=p, n—2,3 (4.12)
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Then

II (4.13)

Hence, under condition (4.11),

(4.14)

and it is a function in U'.
This solution gives the desired representation formula for f(z), first estab-

lished by Bojarski in 1955.

Theorem 4.3. Let f be a quasiconformal mapping of the plane whose com-
plex dilatation p has a bounded support and which satisfies the condition

(f(z) — z) = 0. Then

f(z) = z + Tço,(z),

where is defined by (4.12). The series is absolutely and uniformly convergent
in the plane.

PROOF. By (4.7) we havef(z) z + By (4. 14), = For
p > 2, it follows from Holder's inequality that f c, H p, where the
constant depends only on p and R. Therefore, by (4.13),

� Iii'HJ'1 (4.15)

where c, depends only on p and R. (For this crucial estimate, (4.10) must be
solved in a space V with p> 2.) We conclude from (4.15) that

and that the series on the right is absolutely and uniformly convergent. 0
We proved above that under condition (4.11), U' locally. From Of =

1 + HOf and (4.9) we see that the same holds for Of. It follows that the partial
derivatives of a quasiconformal mapping are locally in 1/ for same p> 2
([LV), p. 215). The p will, of course, depend on

4.5. Existence Theorem

In proving Theorem 4.3 we started from a quasiconforinal mapping which
gave the function ji. The following result, fundamental in the theory of quasi.
conformal mappings, shows that we could equally well have started from a
measurable function p.
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Theorem 4.4 (Existence Theorem). Let p be a measurable function in a domain
A with p <1. Then there is a quasiconformal mapping of A whose complex
dilatation agrees wit h'p a.e.

The proof can be divided into three parts. One first shows that if p E
the Beltrami equation p3w has a locally irijective solution. This can be
so constructed that a topological argument shows it to be in fact globally
injective. Another way to obtain from locally injective solutions a globally
injective one is to use the general uniformization theorem for Riemann sur-
faces. (Theorem IV.3.3). Finally, we get a general solution by approximating
the given p with Cr-functions (cf. Theorem 4.5 below). For details of the
proof and historical remarks we refer the reader to Lebto 14], p. 136. The
proof in [LV], p. 191, employs step functions, while Vekua [1] makes use of
the explicit expression in Theorem 4.3.

For continuous p, the solutions of the Beltrami equation are not neces-
sarily continuously differentiable. In other words, for a diffeomorphic quasi-
conformal mapping its complex dilatation, which is continuous, cannot be
prescribed as an arbitrary continuous function z with < 1. This is one
more reason to generalize the classical Grötzsch definition of quasiconfor-
mality (cf. the remark made at the end of 3.2).

If p is a little more regular than just continuous, we are back in the classical
situation. For instance, a quasiconformal mapping whose complex dilatation is
locally Holder continuous is a diffeomorphism. (See [LV], p. 235, where this
conclusion is drawn from a still weaker condition on p.)

Theorem 4.4 gives immediately a striking generalizati n of the Riemann
mapping theorem: Let A and B be simply connected donu ins in the extended
plane whose boundaries consist of more than one point, and let p be a mea-
surable function in A with p <1. Then there is a quasiconformal mapping
of A Onto B whose complex dilatation agrees with p a.e.

In fact, by Theorem 4.4 there exists a quasiconformal mapping f of A with
complex dilatation equal to p a.e. The boundary of the simply connected
domain f(A) consists of more than one point. Hence, by Riemann's mapping
theorem, there is a conformal map g of f(A) onto B. Then g of has the desired
properties.

4.6. Convergence of Complex Dilatations

it is important in proving Theorem 4.4 that we can initially consider a
smooth p and then obtain the general result by approximation. Let us now
study more closely what relations there are between the convergence of
mappings and that of their complex ditatations.

We first remark that convergence of mappings need not imply convergence
of their complex dilatations. More precisely, let (fe) be a sequence of quasi-
conformal mappings of a domain A. We suppose that the complex dilatations
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p, of satWy àoaØtion � k <1 and that converges locally
uniformly in A towards mapping! with complex dilatation
p. By Theorçm 22, � k, but otherwise there need be no connection
between the func p. i.e., the local mapping properties off,, and I
may be quite p. 186).

The situation changes if the functions p,, converge.

Theorem 4.5. Let (f,,) be a sequence of K-quasiconformal mappings of A
which converges locally uniformly to a quasiconformal mapping I with com-
plex dilatation p. If the complex dilatations of f,, tend to a limit a.e., then
urn p(z) a.e.

This result ([LV], p. 187) is needed to take the third step in the proof of
Theorem 4.4 sketched above. It can also be used to prove that an arbitrary
quasiconformal mapping can be approximated by smooth quasiconformal
mappings (cf. [LV], p. 207).

The following complement to Theorem 4.5 shows that convergence of
complex dilatations implies convergence of the corresponding normalized
mappings.

Tbeorein 4.6. Let p and p.,, n = 1, 2, ..., be measurable functions in the plane
such that k < I and limp,,(z) = p(z) ce. 1ff and f,, are the quasi-
conformal mappings of the plane which fix the points 0, 1 and and have the
complex dilatations p and p,,, then f(z) = urn f,,(z) uniformly in the plane in the
spherical metric.

PROOF. By Theorems 4.4 and 4.2, the mappings f and f,, exist and are uni-
quely determined. By Theorem 2.1, (f,,} is a normal family. By Theorems 4.5
and 4.2, every convergent subsequence (4) tends to f. Then the sequence (f,,)
itself has the limit f. 0

4.7. Decomposition of Quasiconformal Mappings

Let f be a quasiconformal mapping with maximal dilatation K, and assume
that f f2of3, where f1 and f2 are K1- and K2-quasiconformaL We then
have trivially K � K1K2. Using Theorem 4.4 we shall now show that for
any given K1 � K, a "minimal" decomposition 1=12 always exists with
K = K1K2.

Theorem 4.7. Let f be a quasiconformal mapping with maximal dilatation
K, and 0 < t < L' Then f = 12011, where 11 is
K

PROOF. Let p denote the complex dilatation of f. We choose the complex
dilatation off1 as follows: p1(z) is the point on the line segment from 0 to
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p(z) for which h(O,p1(z)) th(0,p(z)), where h is the hyperbolic distance in
the unit disc. It then follows from formula (1.1) that

1 + — (1 +
(4 16)

1— fPi(z)I —

From this we see that 11 is Kt-quasiconformal.
If p2 denotes the complex dilatation of f2 = then by formula (4.4),

1 — .

Hence, again by (1.1),

+ = 2h(p1(z),p(z)) = 2(1 — t)h(0,p(z)) (1 — t)log
+

We conclude that f2 is K1'-quasiconformal.

It follows from Theorem 4.7 that 1ff is a K-quasiconformal mapping and
> 0 is given, we can always write

f=fAo" 012011, (4.17)

where each mapping i = 1,2,..., n, is (1 + e)-quasiconformal.

5. The Boundary Value Problem

5.1. Boundary Function of a Quasiconformal Mapping

A quasiconformal mapping f of a Jordan domain A onto another Jordan
domain B can always be extended to a homeomorphism between the closures
of A and B (ci. 2.1). Thus we can speak of the boundary function off, and it
is a homeomorphism of 8A onto 8B.

Now let h: öA -, aa be a given homeomorphism under which positive
orientations of the boundaries with respect to the Jordan domains A and B
correspond to each other. The boundary value problem is to find necessary
and sufficient conditions for Is to be the boundary function of a quasicon-
formal mappingf: A -+ B.

We restrict ourselves here to studying the normalized case in which A =
B = the upper half-plane, which we denote by H. Then the given mapping h
is a homeomorphism of the one point compactification R of the real axis
onto itself:

Let x1, x2, x3, x4 be a sequence of points of R determining the positi
orientation with respect to H. We call
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M(H(h(x1), h(x2),h(x3), h(x4)))
SUP M(H(x1,x2,x3,x4)) -

where the supremum is taken over all such sequences x1, x2, x3, x4, the
maximal dilatation of h. If it is finite, h is said to be quasiconformal, and if it is� K, the mapping h is K-quasiconforinal. From the definition it is clear that
these one-dimensional quasiconformal mappings have the customary prop-
erties of quasiconformal mappings in the plane: If h is K-quasiconformal,
then so is its inverse and if is I = 1, 2, then h2 oh1
is K1 K2-quasiconformal.

Now suppose that h is the boundary function of a K-quasiconformal
mapping f: H H. Then clearly h itself must be K-quasiconformal, and we
have found a necessary condition for 1*, albeit an implicit one.

This necessary condition becomes much more explicit if we choose the
points x1, x2, x3, x4 in a special manner and introduce the normalization
h(cx) = The normalization means that h is a strictly increasing contin-
uous function on the real axis, growing from to

Theorem 5.1. The boundary values h of a K-quasiconformal self-mapping f of
the upper haif-plar f(co) = satisfy the double inequality

1/).(K)
7z(x + t) — h(x)

A(K) (5.1)
h(x) — h(x — t)

for all x and all t > 0. Here 2 is the distortion function of 2.4. The inequality is
sharp for any given K, x and t.

PROOF. Choose x1 = x — t, x2 = x, x3 = x + t, x4 = co, and denote the
middle term in (5.1) by By the in 2.4, we then have
M(H(x1,x2,x3,x4)) = 1 ?nd

M(H(h(x1),h(x2),h(x3), cx)) + 31.1/2))

for s = 1 and s = —1. Thus (5.1) follows from the fact that h is K-quasi-
conformal. From the characterization of 2 as an extremal function we deduce
that (5.1) is sharp. - 0

5.2. Quasisymmetric Functions

An increasing homeomorphism h: ii —+ with h(cx) is said to be k-
quasisyminetric if

1 h(x + t)— h(x)-�
k h(x)—h(x—t)
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for all XE P and all t >0. A function is quasisymmetric if it is k-quasi-
symmetric for some k. The smallest possible k is called the quasisym-
metry constant of h. From the preof of Theorem 5.1 it follows that if h is
K-quasiconformul and h(oo) = oo, then h is A(K)-quasisymmetric.

Lemma 5.1. The family of k-quasisymmetric functions h which keep 0 and 1
fixed is equicontinuous at every point of the real axis.

PROOF. We first conclude from — � that

�
k

(5.2)

for every non-negative integer n. In looking for a bound for h(a + x) — h(a)
we may assume that a and x are non-negative. Then, if x � 2", it follows
from (5.2) that

" k \
i)•

(5.3)

Ifm � a < m + 1, where m is an integer, then

h(a + 1) — h(a) � km(h(a + I — m) — h(a — m)) � kmh(2) � k'(k + 1).

Hence, (5.3) implies equicontinuity at a. fl

A quasisymmetric function which fixes 0 and 1 is said to be

We conclude that every infinite sequence (he) of normalized k-quasisym-

metric functions contains a subsequence which is locally uniformly con-
vergent on the real axis. The limit is also a normalized k-quasisymmetric
function. This result allows the followir.g conclusion.

Lemma 5.2. Let La, b) be a closed interval on the real axis, and e > 0. Then
there is a ö > 0 such that for a normalized quasisymmetric function 1*,

h(x)—xj<.s, xe(a,b],

whenever h is (1 + b)-quasisyrnmeiric.

PROOF. If the lemma is not true, there is an e > 0 and a sequence of normal-
ized (1 + l/n)-quasisymmetric functions h0, n = 1, 2,..., such that

sup — x( � e

a normal family, there is a subsequence which
converges uniformly on [a,b). The limit is 1-quasisymmetric and hence the
identity. This is a contradiction. (2
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5.3. Solution of the Boundary Value Problem

By Theorem 5.1, quasisymmetry is a necessary condition for h to be the
boundary function of a quasiconforinal self-mapping of H fixing oo. The
condition is also sufficient (Beurling and Ahifors [1]):

Theorem 5.2. Let h be k-quasisymmetric. Then there exists a
self-mapping of the upper half-plane which has the boundary values h and whose
maximal dilatation is bounded by a number K(k) which depends only on k and
tends to I ask—'!.

PROOF. Letf be defined in the closure of H by the formula

1'l
f(x+iy)=fl (h(x+ty)—h(x—ty))dt.

Jo Jo
(5.4)

Clearly f = h on the real axis. We calif the Beurling—Ahifors extension of h
and prOve that it has the desired properties.

Set

c4x,y)= h(t)dt,

(5.5)

P(xiY)=J h(t)dt.
0 Y

We see that and fi are continuously differentiable in H, and an easy calcula-
tion shows that the Jacobian J — oj, is positive throughout H. More
than that, we deduce from (5.5) that f is a continuously differentiable bijective
self-mapping of H (cf. [LV], p. 84). This conclusion can be drawn from the
fact that h is a homeomorphism of R onto quas symmetry is not needed
here.

In estimating the maximal dilatation of (5.4) we make use of linear func-
tions z -. = ajz + j = 1, 2, with real coefficients > 0 and 1ff is
the Beurling—Ahifors extension of h, then A2ofoA1 is the Beurling—Ahifors
extension of A2 oh o A1 1k. This can be verified directly from (5.4). Moreover,
the maximal dilatation of f and the quasisymmetry constant of h do not
change under such a transformation.

Suppose now that there is not a number K(k) bounding, the maximal
dilatation of an extension (5.4). Then there are k-quasisymmetric functions\

and points ; H such that the dilatation quotients I), of the Beurling-.
Ahifots extensions of have the property -. (cf. Theorem 3.1).

Application of suitablç linear transformations 4 makes it possible to as-
sume that the boundary'functions hN are normalized and that; =; l for every
n. By Lemma 5.1, the functions h,, then constitute a normal family. We may



34 1. Quasiconformal Mappings

thus suppose that the functions h converge to a k-quasisymmetnc function
h, uniformly on bounded intervals of the real axis. Let f denote the Beurling—
Abhors extension of this limit function h.

Let s,,, /1,, be the functions (5.5) for From 1, = 1),

and
ro

(xA),(i) = 1
—

h,,(t)dt, = 1) —
J—1

we conclude that the partial derivatives of and at i converge to the
partials of and at i. Because J(D + lID) = + + + —

+ it follows that tends to the dilatation quotient of f at
i. Hence, DR(i) is impossible, and the existence of a finite bound K(k)
follows.

The above reasoning can also be used to proving the existence of a bound
K(k) with the additional property K(k) 1 as k —' 1. If no such K(k) àxists,
there is a sequence of normalized functions whose quasisymmetry con-
stants tend to I while does not converge to 1. From Lemma 5.2 we
conclude that lim h(x) = x. By (5.4), the Beurling—Ahifors extension
of the limit function is then the identity mapping. Thus urn D(i) = 1,

and we have arrived at a contradiction. 0

For all our applications it is sufficient just to know the existence of a
bound K(k) which is finite and tends to I as k —. 1. For the sake of complete-

we mention here that K(k) can be estimated. Beurhing and Ahlfors [1]
show, after rather laborious computation, that if the imaginary part of (5.4)
is multiplied by an appropriate positive constant, the maximal dilatation K
of the modified extension satisfies the inequality K � k2. For the required
calculations, see also Lehtinen [1).

The smallest upper bound known at present for the maximal dilatation
in the class of quasiconformal mappings with k-quasisymmetric boundary
values is 2k — 1) (Lehtinen [3]).

5.4. Composition of Beurling—Ahifors Extensions

Let h1 and h2 be k-quasisymmetric functions and and 12 their Beurling—
Ahifors extensions. If the quasisymmetry constant of h2 o hj' tends to I, it
follows from the proof of Theorem 5.2 that the maximal dilatation of the
Beurhing—AJ)Ifors extension of h2 oh;' converges to 1. However, 12 ofr' is

not the Beurling—Ahifors extension of h2 o hj'. A small modifica-
tion of Theorem 5.2 is therefore required to show that the
maxidM of 12 then also tends to 1. (Cf. Earle and Eels [1].)
This is which we shall need in 111.3.2—3.
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Lemma 5.3. Let hL and h2 be k-quasisymmetric functions and and 12 their
Beurling—Ahifors extensions. If the quasLcymmetry constant of h2 tends

to 1, then the maximal dilatation of 12 off' converges to 1.

PROOF. Suppose the lemma is not true. Making use again of the linear
transformations 4,, appealing to Lemmas 5.1 and 5.2, and reasoning as in the
proof of Theorem 5.2, we would arrive at the following situation. There exist
normalized k-quasisymmetric mappings and n 1, 2, ..., which
converge locally uniformly on the real axis to k-quasisymmetric mappings h1
and h2 and for which o converges locally uniformly to the identity
mapping. On the other hand, if and fn2 are the Beurling—Ahifors exten-
sions of and the dilatation quotient of 1,2 at the point i is
bounded away from 1.

Let f1 and be the Beur4ing-Ahlfors extensions of h1 and h2. Arguing as
in Theorem 5.2 we obtain the result

limD1201-1(i) = (5.6)

But from o —' x it follows that h1 = h2. Hence 11 = 12' and so
D120111(i) = 1. Thus (5.6) is a contradiction. 0

5.5. Quasi-Isometry

In a later application, the following property of the mapping (5.4) will be
needed (Ahlfors [4]).

Lemma 5.4. The Beurling—Ahifors extension of a quasisymmetric function is a
quasi-isometry in the hyperbolic metric of the upper half-plane.

PROOF. Let h be a k-quasisymmetnc function and f its Beurling—Ahlfors
extension (5.4). We have to prove the existence of a constant c depending only
on k, such that

I IdzI Idf(z)I IdzI
(5.7)clmz Imf(z) Imz

The mapping f is K-quasiconforrnal for a K which depends only on k. We
have � maxj and maxj � KJ1(z), where J1 is the
Jacobian off. Hence, the ript-hand inequality (5.7) follows if we prove that

y2KJ1(z) � c2(Imf(z))2 (5.8)

with y = Im z.

Suppose that (5.8) is not true, and apply again the same method of rea-
soning used in the proofs of Theorem 5.2 and Lemma 5.3. We conctude that
there are normalized k-quasisymmetric functions ha, which converge locallY
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uniformly to a k-quasisymmetric function h, such that for the Beurling
Abifors extensions

f of h, then -. J1(i), Imfft(i) —

Imf(i), as we showed in the proof of Theorem 5.2. It follows that (5.9) is
impossible.

Similar reasoning yields the lower inequality (5.7). D

5.6. Smoothness of Solutions

In the 1950's it was a famous open problem whether the boundary function
of a quasiconformal self-mapping of H is absolutely continuous. A direct
construction (Beurling—Ahlfors [1)) combined with Theorem 5.2 gives an
entirely negative answer:

For every k> I, there is a k-quasisymmetric function h which is singular, i.e.,
for which h'(x) = 0 a.e.

Hence, a quasiconformal mapping, while absolutely continuotison lines,
need not be absolutely continuous on every closed line segment in its domain
of definition. Singular quasisymmetric functions were first regarded as a
curiosity. But now we know that, except for linear mappings, all boundary
functions encountered in the classical theory of Teichmüller spaces are singu-
lar (see V.3.6).

In spite of the fact that a given boundary function may be singular, it
always admits extensions which are very smooth in the upper half-plane. We
remarked already that the solution (5.4) is continuously differentiable in H,
and very much more is true:

Theorem 5.3. For every quasisymmetric function, the boundary value problem
has a real-analytic solution.

PROOF. The result can be proved with the aid of the decomposition formula
(4.17) in 4.7 which makes it possible to express a function
as a composition of (1 + e)-quasisymmetric functions. The proof based on
this method will be given in 11.5.2. A more t proof (Lehtinen [1]) is
obtained by a modification of the formula (5.4). e can write in (5.4)

Ref(z)
=

ic(t)(h(x + ty) + h(x — ty))dt,

where ,c(t) = I on [0, 1] and vanishes elsewhere, and a similar expression
obtains for im f(z). If K is replaced by a suitable exponential, the correspond-
ing f turns out to be a real-analytic solution. U
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5.7. Extremal Solutions

Let Fh be the family of all quasiconformal self-mappings of.H whose bound-
ary values agree with a given quasisymmetric h. Then F,, is a countable union
of normal families, and each of these contains its limits under locally uniform
convergence. This allows an important conclusion:

In the class F,,, there always exists an extremal mapping which has the
smallest maximal dilatation in F,,.

While the existence of an extremal mapping can be deduced immediately,
it is much more diflicult to study its uniqueness. It was in fact an open
problem for quite a long time whether the extremal mapping in F,, is always
unique, until in 1962 gave an example which shows that Fh can
contain more than one extremal.

In Strebel's example one considers the domain A which is the union of the
lower half-plane and the "chimney" {zllmz � O} {zlO < Rez < 1} (Fig. 1).
In A we set f1(x + ly) = x + iKy, K> I, and define another mapping 12 so
that 12 agrees with f1 in the chimney and is the identity in the lower half-
plane. Then f1 and f2 are K-quasiconformal in A, they agree on the boundary
of A, and both are extremal for their boundary values (Strebel [1]). By using
a suitable conformal mapping of A onto H we can transform f1 and 12 to
normalized self-mappings of H.

More examples of boundary values with non-unique extremals will be
obtained in V.3.7. On the other hand, there are important cases in which
uniqueness can be proved (V.8.5). The question of unique extremality has
been systematically studied by Reich and Strebel; see, for instance, Strebel
[1], Reich and Strebel [1] and Reich [1].

In certain cases the solution (5.4) is far from extremal.
Lehtinen [3] proved that if h has the quasisymmetry constant k, the maximal
dilatation of (5.4) is always � k. Now let h be the restriction to R of the
K-quasiconforrnal extremal mapping described in 2.4. Then h has the quasi-
symmetry constant In this case the minimal maximal dilatation in F,, is
equal to K, whereas by (2.6), the maximal dilatation of the Beurling—Ahifors
extension is — 1/2.

The preceding considerations make it possible to compare the maximal
• dilatation of the boundary function h with the extremal maximal dilatation
for F,,.

__LI_

Figure 1. Strebel's chimney.
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Lemma 5.5. Let K* be the maximal dilatation of the quasisymmetric function
h and K the minimal maximal dilatation of the quasiconfonnal self-mappings of
1.1 with boundary values h. Then K —, 1 as K* -.+ 1.

PROOF. The function h is by the remark in 5.2 pre-
ceding Lemma 5.1. Here 1(K*) -+ 1 as KS —. 1, as we noted at the end of 2.4.
By Theorem 5.2, the maximal dilatation of the Beurling—Ahifors extension of
h tends to 1 as K5 —. 1. A fortiori, the same is true of the minimal maximal
dilatation'K. 0

The bounds at the end of 5.3 for the maximal dilatation of the quasicon-
formal extensions of h yield quantitative estimates between K and K. For
instance, we have

K5 � K � ).(K)312. (5.10)

Here the lower estimate is trivial, and the upper estimate follows if we use
Lehtinen's bound for the maximal dilatation of the modified extension (5.4).
For our later applications, the qualitative result in Lemma 5.5 is sufficient.

6. Quasidiscs

6.1. Quasicircles

A Jordan curve can be defined as the image of a circle under a homeomor-
phism of the plane. If the homeomorphism is conformal, then the image is a
circle. Between the topological and proper circles, quasicircies form a class of
curves which will come to frequent use in Chapters II, III and V.

A quasicircie in the extended plane is the image of a circle under a
quasiconformal mapping of the plane. If the mapping can be talcen to be
K-quasiconformal, the image curve is called a K-quasicircle. A domain
bounded by a quasicircie is called a quasidisc.

Let f be a quasiconformal mapping of a domain A and F a compact subset
of A. Then there exists a quasiconformal mapping of the plane whose restric-
tion to F agrees with f ([LV], p. 96). It follows that f maps circles in A onto
quasicircles.

Since a quasiconformal mapping preserves sets of area zero, a quasicircie
has zero area. On the other hand, it is possible that all non-empty subarcs of
a given quasicircie are non-rectifiable; concrete examples are provided in
[LV], p. 104. Gehring and Väisälä [1] have proved the striking result that,
while the Hausdorif dimension of a quasicircle is always less than 2, it can
take any value A, I � A < 2. We remark that quasicircies with Hausdorif
dimension greater than 1 play a role in the modern theory of iteration of
polynomials in the plane.

It follows from what we said in 2.4 that a homeomorphism of the
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plane which is K-quasiconformal in the complement of a straight line is
K-quasiconfonnal everywhere. From the definition of quasicircies we obtain
immediately a generalization, which we shall need later several times.

Lemma 6.1 Let C be a quasicircie and f a homeomorphism of the plane which
is K-quaslconformal in the complement of C. Then f is a K-quasiconformal
mapping of the plane.

PROOF. It follows from the definition of a quasicircie that there is a quasi-
conformal mapping w of the plane which maps the real axis onto C. Then
fo w is quasiconformal in the plane, as is also f = (fo w) o Since the area
of C is zero, we conclude from Theorem 3.5 (Analytic definition) that f is
K-quasiconformal. 0

6.2. Quasiconformal Reflections

Let C be a Jordan curve bounding the domains A1 and A2. A sense-reversing
K-quasiconformal involution of the plane which maps A1 onto A2 is a
K-quasiconformal reflection in C if q, keeps every point of C fixed.

Theorem 6.1. A Jordan curve admits a quasiconformal reflection if and only if
it is a quasicircle.

PRooF. Suppose first that C is a quasicircie. Let f be a quasiconformal map-
ping of the plane which maps A1 onto the upper half-plane H. Then the
mapping = ojof, wherej(z) = is a quasiconformal reflection in C.

Conversely, let be a quasiconformal reflection in a Jordan curve C. Let
h map H conformally onto A1. Define f = h(z) in the closure of H,

f(z) = in the lower half-plane. Then f is a homeomorphism of the
plane which is quasiconformal off the real axis, which it maps onto C. By
Lemma 6.1, f is quasiconformal in the plane, and so C is a quasicircle. 0

We can draw certain additional conclusions from the above proof.
First, if C admits a K-quasiconformal reflection, then C is a K-quasicircle.
In the opposite direction we deduce that a K-quasicircle always admits a
K2-quasiconformal reflection.

In the second part of the proof, the required quasiconformal mapping of
the plane is conformal in a half-plane. For the sake of later reference, we wish
to express certain connections between conformal mappings and quasicircles
explicitly.

Lemma 6.2. A K-quasidisc A has the following properties:

10 Every quasiconformal reflection in OA is of the form fojof1 , wheref
quasiconfomal mapping of the plane which maps the upper half-plane H
conformally 'onto A, and) denotes the reflection z
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2° A is the image of H under a K2-quasiconformal mapping f of the plane

which in H.
3° Every conformal mapping f: H -' A has a K2-quasiconformal extension to

the plane.

PROOF. Let be an arbitrary quasiconformal reflection in 8A. 1ff is con-
structed as in the second part of the proof of Theorem 6.1, with A replacing
A1, we obtain 1°. Since OA is a K-quasicirck, there exists a K2-quasicon-
formal reflection q'. The corresponding f is also K2-quasiconformal, and 20
follows. We use this same in 3° and conclude that ofoJ is a desired
extension of f. 0

We return'to our previous notation and denote by C a Jordan curve which
bounds the domains A1 and A2. In what follows, c(K), c1(K), ... denote
constants which depend only on K.

Lemma 6.3. Let be a K-quasiconformal reflection in C which passes through
x.Then

c1(K) ,
(6.1)

'12(4)(Z))

where is the Poincaré density of A2.

PRooF. Let h: H —i A1 be a conformal mapping, h(ao) and set again
f = h in the closure of H and f = q, oh of in the lower half-plane. Then f is a
K-quasiconformal mapping of the plane.

Fix zeA1 and z0eC. The function f maps the circle {wJIw—
onto a curve which passes through the points z and

By Theorem 2.4,

Iz —,zoVc(K) � — zol � c(K)Iz — zol. (6.2)

If we choose such that — z01 is equal to the distance d((p(z), C), then

frp(z) — � — + Iz z01 � (1 + c(K))d(ço(z),C).

From this we obtain (6.!) by using the inequality (1.3). 0
We remark that (6.2) yields the estimate

d(z, C)/c(K) � d(p(z), C) � c(K)d(z, C). (6.3)

Here we can take c(K) = A(K) (see 2.5).
For our later applications (see 11.4.2) it is important to know that there

exist quasiconformal reflections whiéh are quasi-isometries in the euclidean
metric (Ahlfors [41). We also call such reflections Lipschitz-continuous.

Lemma 6.4. Let C be a K-quasicircle bounding the domains and A2 and
passing through Theii there exists a c2(K)-quasiconformal reflection q' in C,
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continuously differentiable in A1 and A2, such that

a Idq(z)J � c3(K)Jdzl (6.4)

at every point zeA1.

PROOF. Let h1 be a conformal mapping of A1 onto the upper half-plane H
and h2 a conformal of A2 onto the lower half-plane, both fixing oo.
Since h1 and h3 extensions to the boundary, we can
form the on the real axis. It is quasisymmetric. For if is a

reflection in C and j again denotes the reflection z —' 2,

then Jo h2 o o a quasiconformal self-mapping of H with boundary
values

By using the Beurling—Ahlfors extension (5.4), we construct a quasi..
conformal diffeomorphism f: H -+ H with boundary values h2 o hj'. Set

= = ojofoh1 in the closure of A1 and q = in A2. Then q' is
a c2(K)-quasiconformal reflection in C, which is continuously differentiable
outside C.

Since the Poincaré metric is conformally invariant, it follows from formula
(5.7) that

172(q)(z))Id(p(z)j �
From this we obtain (6.4), in view of(l.3), (1.4) and (6.3). 0

6.3. Uniform Domains

Let us now start studying the geometry of quasidiscs. We shall prove a chain
of theorems which, when put together, give several characterizations for
quasidiscs and shed light on their geometric properties. In subsections 6.3—
6.5, we follow the presentation of Gehring [4). A summary will be given at
the end of subsection 6.7.

Throughout this subsection we assume that A is a simply connected proper
subdomain of the complex plane. The domain A is said to be uniform if there
are constants a and b such that each pair of points z1, z2 e A can be joined by
an arc ri in A with the following properties:

1° The euclidean length of satisfies the inequality

l(x) � aizi — (6.5)

2° For every z e

min(I(x1), 1(a2)) � bd(z, ÔA), (6.6)

where of a\{z).

It will appd A if aild only is a quasidisc. We
first prove directly is tsnifdrm. This requires a fairly lengthy
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argument, and we begin with a lemma in which, as before, c(K), c1(K),
constants depending only on K. These are not necessarily the same

that arose in the previous subsection.

Lsra6S.Let AbeaK-quasidisc with aconformai
mappMg = Then

• 1"
• I If'QOl di � (K)d(f(iy), 8A)

Jo-

forO<y <

.PKOOF. By Lemma 6.21 has a K'-quasiconformal extension to the plane. We
may assume without loss of generality that f(O) = 0.

For y >0, the mappingf satisfies the inequality

If'(iy)l
� 4d(f(iy),

(6.7)

This follows directly from the Koebe one-quarter theorem cited in 1.1, if we
apply it to the function C —. (f(iy + yC) — f(ay))/yf'(iy).

In order to estimate the distance d(f(iy), .3A) we fix y. After this, we
choose a sequence (yj) so that 0 < y and that IfQy,)I =

c = c(K2) is a constant for which Theorem 2.4 holds forf.
(We can take, for instance, c =

Let Yj+1 � t Because d(f(it), If(it) — 1(0)1, we obtain from (2.8)

d(f(it), OA) � clf(iyj) — 1(0)1 = If(iy)f.

Hence, by (6.7)

I If'(it)Idt �
Yj+i

The Iogarithpi can be estimated by aid of (2.9). Let n be the smallest mteger
for which c n. Then If('y,) — f(0)f � 1(0)1, and so by (2.9),

= — 01 � — 01 = c2(K)yj÷1.

It follows that

I lf'Qt)idt � =
Jo

Finally, if xe oH, then by applying (2.8) again we infer that If(iy)I �
clf(ly) — Thus lf(iy)I � cd(f(iy),OA), and the proof is completed. 0

Let z1 and be points of A and the hyperbolic segment of A joining z1
and z2. If A is a disc or a half-plane, it is easy to show that (6.5) and (64) hold
for a n/2. This property generalizes to quasidiscs.
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Theorem 6.2. Let A be a K-quasidisc and a a hyperbolic segment In A with
endpoints and z2. Then a satisfies the conditions (6.5) and (6.6) wIth constants
a and b which depend only on K.

PROOF. By Lemma 6.2, there is a K2-quasiconformal mappingf of the plane
which maps A conformally onto the unit disc D. We can choose f so that

and f(z2) are real. Let D' be the open disc in D which has the line seg-
ment with endpoints 1(z1) and 1(z2) as a diameter. Then f1(IY) is a bounded
K2-quasidisc, in which a is a hyperbolic line. Since d(z,f'(OD')) �
for we may assume, therefore, that A itself is bounded and a is a
hyperbolic line in A, i.e., z1, z2 EM.

Let A' and a' be the images of A and a under the Möbius transformation
z .-+g(z) = (z — — 22). Then = — z2)(w — 1)_2,

1(a) — 2) lw—i 12
(6.8)

In order to estimate the we use the arc length representation
s —, w(s) for a'. Let s0 = c1(K)/(c1(K) + 1), where c1(K) is the constant of
Lemma 6.5. IfO <s s0, then lw(s) — � 1 — Iw(s)l � 1 — s � i/(c1(K) + 1).
For s > we apply Lemma 6.5 to a conformal mapping f: H -. A' fixing
0 and Then a' is the image of the positive imaginary axis, and so by
Lemma 6.5,

= I � c1(K)d(w(s),DA')
Jo

for iy = f'(w(s)). From 1 = we further conclude that d(w($,t3A') �
lw(s) — 11. It follows that

� + l)2ds + J C1(K) ds = 2c1(K)(c1(K) + 1).

Thus (6.5) is obtained from (6.8) with a = 2c1 (K)(c1 (K) + 1).
In order to establish (6.6), we consider a K2-quasiconformal mapping f of

the plane, f(oo) = oo, which maps A conformally onto the unit disc D. Fix.
z€a and choose z0e.3A so that 12 — = d(z,c3A). Since f(a) is a hyperbolic
line in D,

mm Jf(z) — � 2d(f(z), aD) � 2 11(z) —
• 2

By formula (2.9),

mm Iz — zjl � 2c(K2)21z — Zol = 2c(K2)2d(z,ØA).
J=1.2

Since I(aj) � alz—zjl by(6.5), we obtain (6.6) with b = 4c(K2)2c1(K)(c1(K)+ 1).0,
The following result follows immediately from Theorem 6.2.
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Theorem 6.3. A quasidisc is a uniform domain.

Theorem 6.3 is the first link in a closed chain of four theorems. 013cc these
have all been proved we get the converse to Theorem 6.3.

6.4. Linear Local Connectivity

A set• E is linearly locally connected if there is a constant c such that the
following two conditions hold for every finite z and every r> 0, where
D(z,r)— {wJIw—zI <r}:

1° Any two points of the set En D(z,r) can be joined by an arc in En D(z,cr).
20 Any two points of the set E\D(z, r) can be joined by an arc in E\D(z, r/c).

In order to illustrate this notion, we let E be the parallel strip {x +
— I <y < I). The points 0 and 2r > 0 of E\D(r, r) can be joined in E\D(r, nc)
only if c> r. Letting r —, we conclude that £ is not linearly locally
connected.

If a simply connected domain A with more than one boundary point is
linearly locally connected, then A is a Jordan domain. To prove this, we
consider a finite boundary point z of A. Let U be an arbitrary neighborhood
of z, and choose r > 0 such that the closure of the disc D(z, Cr) lies in U. Then
V = D(z, r) is a neighborhood of z such that A n V lies in a component of
A U. It follows that A is locally connected at z. A similar reasoning, based
on the use of condition 2°, shows that if e then A is locally connected
at We conclude that A is a Jordan domain (see 1.2 or Newman [11
pp. 167 and 161).

We shall see after completing our chain of theorems that in fact, a simply
connected domain with more than one boundary point is linearly locally
connected if and only if it is a quasidisc. We shall now establish'the second
link of the chain.

Theorem 6.4. A uniform domain A is linearly locally connected.

PROOF. Fix a finite z0 and r > 0, and suppose that z2 A n D(z0, r).
Since A is uniform, there exists an arc joining z1 and in A such that
I(ct) � oIz1 — z21 � 2ar. IfzEx, we thus have

(z—z0{�jz—z11+1z1 1)r.

It follows that and z2 in A n D(z0,cr) if c = 2a + 1.
Next assume that z1, z2 e A\D(z0, r). We consider an arc joining z1 and

z2 in A with � for every Set c = 2b + 1. If joins z1
and z2 in A\D(z0,r/c), the theorem is proved. Now suppose that does not
join z3 and z2 in A\D(z0,r/c). We prove that, nonetheless, A\D(z0,r/c) is
connected.
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By our hypothesis, there is a point z a for which z — z0 <nc. For
j = 1, 2 we have

� Izj — zf� Izj — — — z0( � r — nc.

Thus

We conclude that D(z0,r/c) c A. It follows that and z2 can be connected
in A\D(z0,r/c). 0

From the proof we see that A is linearly locally connected with the con-
stant c 2 znax(a, b) + 1.

6.5. Arc Condition

Let C be a Jordan curve and z1, z2 finite points of C. They divide C into two
arcs, and we consider the one with the smaller euclidean diameter. The curve
C is said to satisfy the arc condition if the ratio of this diameter to the distance
fz1 -- is bounded by a fixed number k for all finite z1, z2€C.

A circle satisfies the arc condition for the constant k = 1. An example in
the opposite direction is obtained if we consider the curve C = {x + > 0,

y ±x2}. liz1 = x + ix2, z2 x — ix2, then — z2f = 2x2, and the smal-
ler diameter in the above definition is � x. Hence d/1z1 — z21 —. as x —' 0,

so that this curve does not satisfy the arc condition.
We shall now establish the third link of our chain.

Theorem 6.5. Let A be a simply connected domain whose boundary contains
more than one point. If A is linearly locally connected, then ÔA Is a Jordan
curve which satisfiec the arc condition.

PRooF. In 6.4, after defining the notion of linear local connectivity, we proved
that s a Jordan curve.

Choose two finite points z1, z2eöA and set z0 = (z1 + 22)/2, r =
1z1 — The theorem follows if we prove that at least one of the arcs
a1, a2 into which the points z1, z2 divide ÔÁ lies in the closure of the disc
D(z0, c2r).

The proof is indirect. Suppose there is a t> r and points E ct1\D(z0, c2 t),

I = 1,2. < <S2 <i; then and z2 belong to the set
A is a Jordan domain, its boundary points are accessible. We can thus

find points z eA D(z0, and arcs z to z1 in A ri D(z0, s1). By the
linear local connectivity of A, the points and 4 can be joined by an arc fl3
in A D(z0,cs2).

The points w1 and w2 lie in ÔA\D(z0,c2s2). Therefore, we can find an arc y
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joining w1 and w2 in A\D(z0,cs2). But then the cross-cut y does not meet the
cross-cut u fl2 u fl3. This is a contradiction, because their endpoints are in
the order Wi, 22, w2 on ØA. 0

The proof indicates that if A is linearly locally connected with a constant
c, then ÔA satisfies the arc condition with the constant c2.

6.6. Conjugate Quadrilaterals

We shall now close our chain of theorems by proving that if the boundary of
a Jordan domain A satisfies the arc condition, then A is a quasidisc. This is a
difficult step for which no simple proof seems to exist. As a preparatory
result, we give a characterization of quasicircies in terms of quadrilaterals.

Let C be a Jordan curve bounding the domains A1 and A2. Take a se-
quence of four points z1, z2, z3, Z4EC that A1(z1,z2,z3,z4) is a qua-
drilateral. Then A2(z4,z3,z2,z1) is also a quadrilateral, and these two
quadrilaterals are said to be conjugate.

Lesmna 6.6. Let C be a Jordan curve such that for all conjugate quadrilaterals
A1, '42 with M(A1) = I we have M'.42) K. Then C is a c(K)-quasicircle,
where c(K) depends only on K.

PRooF. Let gi: A1 -, If and 92: '42—p H' be conformal mappings, where H' is
the lower half-plane. Consider the increasing homeomorphism x h(x) =
92(9j1(x)) of the real axis. For all quadrilaterals H(z1,z2,.z3,z4) with module
iwe then have

If I( � M(H(h(z1),h(z2),h(z3),h(z4))) � K.

We proved in section 5 that the validity of this module inequality is
'S sufficient condition for the existence of a c(K)-quasiconformal mapping
[H-.H with boundary values h. Then fog1 extended by 92 iS a c(K)-

• quasiconformal mapping of the plane carrying A1 onto H. Thus C is a
c(K)-quasicircle. 0

In order to utilize Lemma 6.6, we need a result about the geometry of
conformal squares.

Lenma 6.7. Let Q(z1, 22,23, z4) be a quadrilateral with module 1, and let and
denote the euclidean distances in Q between the sides (ii, z2), (tp,X4) and

(z4, respectively. Then ,.

>

We assume that among the arcs which join the sides (22,Z3) and
z1) in Q is a of length Let 1 be the point which divides Vo into
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two parts of length 52/2. Set pfr) = 2/s2 if Iz — z01 � 52/2, p(z) = 1hz — zoj if
s2/2 < Iz — � s1 + s2/2, and p(z) 0 elsewhere. The area of Q in
this p-metric then satisfies the inequality

� it(l ÷ 2log(1 + 2s1/s2)).

Consider next an arc y joining the sides (z1,z2) and (z3,z4) in Q. FQr the
p-length of y we obtain a minorant if we integrate 1/x over a segment with
endpoints s2/2 and s2/2 + Therefore,

I p(z)IdzJ � log(1 + 2s1/s2).
-'1

Setting

F(x) — 1 + 2 log(1 + x)
— (log(1 + x))2

we thus we have by formula (1.7),

.1 = M(Q(z1;z2,z3,z4)) �
From this we obtain, by interchanging the roles of s1 and

2 2 o
— — 1

>

6.7. Characterizations of Quasidiscs

We can now establish the remaining link of our chain.

Theorem 6.6. A Jordan domain whose boundary satisfies the arc condition is a
quasidlsc.

PROOF. Let C be a Jordan curve which satisfies the arc condition and bounds
the domains A1 and A2. Choose four points z1, z2, z3, z4 on C such that.

with module 1. We shall derive an upper
bound for quadrilateral A3(z4,z3,z2,z1).

Let tl)c distance in A1 between the sides (z1,z2) and (z3,z4), and
d1 the same distanee measured in the plane. For the remaining sides (z2,z3)
and these distances are denoted by and d2. From Lemma 6.7 it
follows that

s1 > 103d2. (6.9)

Since C satisfies the arc condition, there is a constant k � I such that one
of the sides (z2,z3), (z4,z1) lies inside a disc of diameter ku1. From this we
conclude that

103,rk
(6.10)
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For if not, one of the sides (z2,z3), (z4, z1) lies in a disc of diameter 103d2/*.
The other, which is at a distance d2 from this one, must lie.outside this disc.
It follows that the sides (z1, z2) and (z3, can be joined in A1 by a circular
arc of length � This is in contradiction with (6.9), and (6.10) follows.

Since (6.10) is formulated in terms of the distances in the plane, it can be
used to estimating the module of A2. We first conclude as above theexistence
of a disc — <kd2f2 which contains one of the sides(z1, z2), (23, 24). Let

r = kd2/2 +

and define p(z) = I if tz — z01 <r, and p(z) = 0 elsewhere. By the
p-length of an arc yjoining the first and the third side of A2 is � 103d2/irk.
Hence,

M(A2(z4,z3,z2,z1)) � IO6ir(irk2/2 + 10-3)2.

By Lemma 6.6, C is a quasicircie, and the theorem is proved. We remark that

C is a c(k)-quasicircle where c(k) depends only on the constant k in the arc
condition. 0

Before summarizing our results we remark that the converse of Theorem
6.6, which we now know to be true, admits a fairly simple direct proof ([LV],
p. 101).

Quasicircies passing through satisfy a particularly simple geometric

condition.

Theorem 6.7. Let C be a K-quasicircle passing through and zj, Z2, 23 finite
points of C such that z2 Ues between z1 and z3. Then -

Izi — + 1z2 — � c(K)Izj — (6.11)

PROOF. Let f be a K-quasiconformal mapping of the plane which maps the

real axis onto C such that f(co) = Denote x1 = i = 1, 2, 3, and
= lxi — x21}, C2 = {wflw _X3j = fx2 — x31}. Join z1 and

byatiñt segment L, and denote by a1 and a2 the first points at which L
f(C when one moves along L from z and from z3. Then

S

jE1 — a1. 1z2 z31 � c(K)1z3 — a2l.

These yield the desired inequality (6.11). It follows from the proof and our
remark in 2.5 that (6.11) holds for c(K) = .a(K). 0

CönvëlsCly, a JOfdan CUrve C containing oo satisfies (6.11).
Then C satisfies the arc condition with the constant c(K), and C is a

The implications in form an unbroken chain which



I
6, Quasidiscs 49

starts and ends with quasidiscs. This makes it possible to draw the remark-
able conclusion that the converse of each of these theorems is true. It follows
that quasidises can be characterized as domains with the hyperbolic segment
property of Theorem 6.2, as uniform domains (Theorem 6.3), as domains
which are linearly connected (Theorem 6.4) or as domains whose
boundary satisfies the arc condition (Theorem 6.5 or Theorem 6.6). Here we
assume of course that the domains are simply connected and have more than
one boundary point. In addition, Theorem 6.1 tells that quasidiscs are Jordan
domains whose boundaries admit quasiconformal reflection.

The special position of infinity necessitates some clarification. In defining
uniform domains A we assumed that is not in .4, and Theorem 6.2 is not
true if A contains By contrast, Theorems 6.5 and 6.6 hold without this
restriction, which is not utilized in the proofs. It is not hard prove that the
converses of these theorems are also valid for domains in the extended plane
For Theorem 6.6 this follows immediately from the fact that if A is a quasi-
disc and cc. €A, then is a bounded quasicircie. Since the converse of
Theorem 6.6 holds for quasidiscs of the complex plane, satisfies the arc
condition.

There are aiso characterizations cf quasidiscs in terms of analysis rather
than geomel ry. They sometimes reveal surprising Connections between var-
ious problems of analysis which on the surface have nothing to do with
quasicouformal mappings. Iii 11.4 we shall establish a result of this type, using
Schwarzian derivatives (see especially 11.4.4). A comprehensive account of the
main properties of quasidiscs known in 1982 is given in Gehring's lecture
notes [4}, which we have utilized to a large extent in this section. These notes
also contain an extensive bibliography.

Quasicircies mtro'duced by Pliuger (1961) and Tienari (1962). In
1963, Ahllors characterized quasicircies geometrically by proving that the
arc condition is necessary and sufficient. In this same paper, he also intro-
duced reflectionc and used them to prove an important ex-
tension theorem for conformal mappings (Theorem 11.4.1). Gehring [2J
defined the notion of lincaz local connectivity and proved Theorem 6.5 in
1977. Theorem 63 and its cor.verse were established by Martio and Sarvas
[1] (1979). and Thc'rem 6.2 with its converse by Gehring and Osgood [1]
(1979).



CHAPTER II

Univalent Functions

Introduction to Chapter II
The theory of univalent analytic functions covers a large part of complex
analysis. In this chapter, we deal with certain aspects of the theory which are
directly or indirectly connected with Tcichmüller theory. The interaction
between univalent functions and Teichniüllcr spaces was already explained

in the.tntroduction to this monograph. A more comprehensive des-
cription is provided by Chapters II, III, and V, taken together.

In this chapter a central position is occupied by the Schwarzian derivative
of a locally injective meromorphic function. In section 1 we begin with the
classical result that the Schwarzian derivative vanishes identically if and only
if the function is a Möbius transformation. Sonic other basic properties of the
Schwarzian and its sup-norm are also established.

In section 2 we consider Schwarzian derivatives of conformal mappings of
a simply connected domain A. Particular attention is paid to the case in
which the image domain is a disc. The norm of the Scbwarzian is then
intimately related to the geometry of A and provides a measure of the dis-
tance of A from a disc.

Sections 3 and 4 deal with a problem which, apart from its intrinsic interest,
plays an important part in Tcichmüller theory. Let f be quasiconformal in
the plane with complex dilatation p and confocmal in a simply connected
domain A. The problem is to describe the inteirelations existing between p
and the Schwarzian derivative of the restrictionf I A.

In section 3 we a quantitative estimate which shows that if the sup
norm of p is small, then the norm of the Schwarzian of f IA is also small.
The method of proof can be adapted to the study of many other problems
concerning univalent functions with quasiconformal extensions. We establish
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some results of this type, even though they might veer a little off the main
track from the standpoint of applications to the Teichmüller theory.

We return to the main problem in section 4. A basic result says that if a
function f, meromorphic in a quasidisc, has a small Schwarzian derivative,
then I is univalent and has a quasiconformal extension to the plane with a
small It is then proved that the result does not hold in simply connected
domains which are not quasidiscs. In this section, the interplay the con-
cepts complex dilatation, quasidisc and Schwarzian derivative becomes very
concrete.

In section 5 we consider meromoi'piñc functions in a disc. Results of
section 4 can then be supplemented and expressed in a more explicit form.
Again, this is not only of interest in itself but leads to important conclusions
in Teichmüller theory.

1. Schwarzian Derivative

1.1. Definition and Transformation Rules.

Let us consider a Möbius transformation z -. f(z) = (az + b)/(cz + d). Dif-
ferentiation yields

f"(z) — 2c (f"'\' — 2c2

f'(z) — cz + d'
(z)

(cz + d)2

Using the notation

/ ,,\s
I

we conclude that every Möbius transformation satisfies the differential
equation

S, =0. (1.2)

Conversely, if we start from the equation (1.2) and set y =f"/f', then
= p2/2. From this we deduce, by an easy integration, that every solution of

(1.2) is a Möbius transformation.
The expression (1.1) is called the derivative of the functionf. It

can of course be defined for a much more general class of functions than
Möbius transformations. In order to make clear the notions to be used, we
remark that in our terminology, a meromorphic function need not necessar-
ily have poles. A holomorphic (unction is a meromorphic function without
poles. The word "analytic" is a synonym for "meromorphic", but to avoid
confusion it is more rarely used. The terms "conformal mapping", "injective
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meromorphic function", and "univalent analytic (meromorphic) function" all
have the same meaning. Sometimes we follow time-honored practice and say
"univalent" instead of "univalent analytic".

Let us first assume that f is holomorphic in a domain A in the complex
plane andf'(z) 0 in A. We then define the Schwarzian derivative S1 off by
means of formula (1.1).

If, in addition, f(z) 0, we see from (1.1) that

S1(z) S111(z).

We use this formula to define S1(z) for a meromorphic f at points where! has
a first order pole. It follows that if a meromorphic f is locally injective in A,
then Sf is defined everywhere in A, and it is in A.

Direct computation gives the transformation rule

= (S1og)g'2 ± (1.3)

If g is a Möbius transformation, we have 59 = 0, and so

S109=(Sfog)g'2. (1.4)

This formula can be used to define the Schwarzian derivative at infinity.
Assume that f is mcromorphic and locally injective in a domain which
contains and let p be defined in a neighborhood of the origin by
q(z) = I/z). By (1.4), we have z4SQ(z) = S1(l/z). Hence, if we define

= Jim z4S,(z),
z-0

then is holomorphie at x. We see that S1 has a zero of order �4 at
infinity. In conclusion, the Schwarzian derivative can be defined in any do-
main A for every function f meromorphic and locally injective in A, and it is
a holomorphic function in A.

The Schwarzian derivative will play a very central part throughout this
chapter on univalent functions and in the presentation of Teichmüiler theory
in Chapters III and V. It was introduced to complex analysis in 1869 by
II. A. Schwarz ([1], p. 78). Schwarz established equation (1.2) and used it to
map a simply connected domain bounded by fmitely many circular arcs con-
formally onto a disc.

The special role of Möbius transformations in connection with Schwarzian
derivatives appears not only from equation (1.2) but also from the invariance
property following from (1.3) and (1.2): 1ff is a Möbius transformation,

Slog ='S9.

In studying the local approximation of a meromorphic function by Möbius
transformations Martio and Sarvas arrived at the Schwarzian derivative in
a way which justifies using the word "derivative" for the operator Let f be
a locally injective meromorphic function in a domain A and z0 an arbitrary
finite point of A. Then there is a unique Möbius h such that
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(z — 2()

is finite. This limit is çqual to S1(z0)/6.
In the proof we may assume that for if h corresponds to

1/f, then z —, h(1/z) corresponds to f. For an undetermined Möbius
transformation h, we write (hof)(z) = a0 + — z0) + a2(z — zo)2 +
a3(z — z0)3 + ".Since h depends on three complex parameters, there is a
unique h such that a0 = 20, a1 = 1, a2 = 0. Then ((hof)(z) — z)/(z — z0)3 has
the finite limit a3 as z z0. A direct computation, based on a1 = 1, a2 = 0,

and Sh =0, shows that 6a3 = S1(z0).

1.2. Existence and Uniqueness

The Schwarzian derivative can be prescribed:

Theorem 1.1. Let be a holomorphic function in a simply connected domain A
in the complex plane. Then there is a meromorphic functionf in A such that

S1—ço. (1.5)

The solution is unique up to an arbitrary Möbius transformation.

PROOF. Through the stibstitution y f"/f' equation (1.5) transforms to the
Riccati equation y' — y2/2 = q'. From this we obtain, by the standard sub-
stitution y — 2w'/w, the linear second order equation

(1.6)

It is a well-known result in the classical theory of linear differential equa-
tions that given a point z0eA, equation (1.6) has a unique holomorphic
solution w in a neighborhood of z0, once we prescribe the values w(z0) and
w'(z0). It is also easy to verify this directly, with the aid of power series. In
fact, we have q,(z) = — Zn)" in a disc around z0. If

w(z) = c,,(z — (1.7)

then for w to be a solution we obtain from (1.6)
"—2

n(n — + = 0, n = 2, 3

The coefficients c0 and c1 can be chosen arbitrarily; we take c0 0, C1 = 1.
Next we fix an r, 0 < r < 1, md a finite number M> I such that <Mr",
n 0, 1, ..., and that Mr2 < 1. Then

s—2 ,t—2

n(n — � M E r ICkI <r'" rckl.
k—0 k0
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1, gives � It follows that (1.7) is a holomorphic solution of (1.6) in
the disc lz — zol

Since A is simply connected, we can apply the Monodromy theorem and
obtain a global solution of(1.6) by analytic continuation.

Let w1 and w3 be two linearly independent holomorphic solutions of(1.6).
Since w1w3' — = 0, we have — = constant. Tha constant is
not zero, because w1 and w3 are linearly independent. Set I = w1/w2; then f
is a locally injective meromorphic function in A. Direct computation yields
f/f' = —2w/w2 = ç.

From the invariance of the Schwarzian derivative under Möbius transfor-
mations we conclude that, if f is a solution of(1.5) and h an arbitrary Möbius
transformation, then h of also is a solution of (1.5).

Assume, conversely, that I and g are solutions of (1.5) in A. Since f is
locally injective, we can define gof1 locally. Using (1.3) we deduce from
S, = S, that S,01.-1 =0. It follows that locally g = hof, where h is a Möbius
transformation. But then g = h of with the same Möbius transformation h
everywhere in A, and the uniqueness part of the theorem is proved. 0

We supposed in Theorem 1.1 that is not in A. If eA, it follows from
the definition of the Schwarzian derivative at (see 1.1) that Theorem 1.1
remains valid under the sole restriction that the given function p must have
a zero of order � 4 at infinity. In particular, a function is determined by its
Schwarzian derivative up to a Möbius transformation.

1.3. Norm of the Schwarzian Derivative

The Schwarzian derivative S1 measures the deviation of I from a Möbius
transformation. In order to make this statement more precise we introduce a
norm for S1.

Let A be a simply connected domain conformally equivalent to a disc and
tjthe Poincaré density of A (cf. 11.1). For functions q, holomorphic in A we
define the norm

119' hA = sup
z.4

In particular,
II S1 H4 (1.8)

z6A

There are many reasons to use this "hyperbolic sup-norm" instead of the
ordinary norm suplS1(z)l. We shall soon see that (1.8) exhibits more in-
variance with respect to Möbius transformations than sup(S1(z)(. This is
important as such and becomes crucial when we generalize the notion of
Scbwarzian derivative to Riemann surfaces,because is a function on
a Riemann surface whereas is1i is usually not.
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It is important to see how the norm (1.8) transforms under conformal map-
pings. Let I and g be meromorphic functions in a domain A and h: B -' A a

conformal mapping. By the transformation rule (1.3),

— (S1o1i S,oh)h'2.

We also know that the hyperbolic metric is conformally invariant: —

oh) h' If w = h(z), we thus obtain the basic invariance formula

IS,(w) — S,(w)I — —
(1 9)

?JA(W) —

Equation (1.9) yields a number of results about the norm. First, it follows
immediately from the. definition of the norm that we have the invariance

115,— S,t = IIS,Qh — S901113.

For the special case in which g = h' is a conformal mapping of A we obtain
the formula

uS,— = (1.10)

which will be repeatedly used later. If we choose f here to be the identity
mapping, we get the invariance

IISØIIA = (1.11)

between a conformal mapping and its inverse. Finally, if g h' is a Möbius
transformation, (1.9) shows the invariance of under Möbius transfor-
mations, and (1.10) assumes the form

II S, HA = uS,0,-1 (1.12)

We see that H S, H is completely invariant with respect to Möbius transforma-
tións: If h and g are Möbius tEansformations, the norms of the Schwarzians
are the same forf in A and hofog in

1.4. Convergence of Schwarzian Derivatives

Suppose that the functions n = I, 2, ..., are meromorphic and locally
injective in a domain A. If they converge to a locally injective meromorphic
function f locally uniformly in A, then the Schwarzians S1, also tend to S1
locally uniformly in A. However, this does not imply convqgence in norm:

From

liinS,(z) = S1(z)

locally unjformly in A, it does not necessarily follow that

limIIS,—S,1L4=0. (1.13)
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A counterexample is obtained as follows. Let r1, 0< < 1, = 1, 2,.
be numbers tending to I and {zIIzI> 1). If we act = z + r,,/z,
1(z) = z + lfz, then j, and f are meromorphic and even globally mjective
in A. From IfA(z) — f(z)I < 1 — r,, we see that fA(Z) —.1(z) uniformly even in
the whole'domain A. In spite of this, it follows-from = (1z12 — 1)' and

6r, . 6
S1(z)

(z2 —
S1(z)

= (z2 —

that -

/
a ))=6

x

for every n.
The approximating functions map A onto the exteriors of ellipses which

collapse to a slit domain f(A). However, if a slit domain is approximated
differently, we do get for the Schwarzian derivatives both locally uniform
convergence and convergence in norm.

This is seen from the example in which A is the upper half-plane and
z°', where the numbers are positive and tend increasingly to 2.

Then and the limit function z f(z) = z2 are univalent in A. From
S,(z) = (1 it follows that

4—a2
— S,(z)J

= 21121 ifS1 — = 2(4 at).

We see that S1(z) locally uniformly in A and Xhat —, S1 in norm. In
this case f(A) is the plane slit along the non-negative real axis, and the
approximating domains = (wIO < argw < are infinite sectors.

Figure 2 illustrates the difference between the two cases. In order to get the
same limit domain and the same "critical" points, we have replaced in the
first example by + and in the second one by + — with

= These changes leave the Schwarzians invariant.
The converse problem is to study whether we can conclude from (1.13) that

the mappings converge to 1. Since the Schwarzian derivative determines

Example 1. S1 S1 Example 2. S1 -+ S1

Figure 2
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z z
-)

z-Plogz h

__________ __________

Figure 3

the function only up to a Möbius transformation, Some normalization is of
course needed for the functions and f.

if no normalization is imposed on the functions fM in (1.13), they may
converge pointwise but the limit can be very different from f. For instance,
consider the mappings z —' f(z) = logz and z = in the upper half-

Since S1(z) = 1/(2z2), we have

IIS.,, — S1 U 2/n2,

and so (1.13) is valid. But does not tend to log z but to the constant 1.
The situation changes if suitable Möbius transformations are applied to f,,

and f. In fact, set

,r I +
h(w) =

4n 1—we

(For the images of the upper half-plane under h0 and h of, see Fig. 3.)
We stiLl have of course Shof —' but now we also have lim =
h(log z).

In general, the reasoning might go as follows, if we can infer that the
functions f,, constitute a normal family, then there is a subsequence which
tends locally uniformly to a limit function Jo. If 10 is a locally univalent
meromorphic function, then S1(z) —+ for every z e A. On the other
hand, (1.13) implies that S1(z) in A. Hence, by the uniqueness part of
Theorem 1.I,f = hof0, where his a Möbius transformation.

Let us give an application. Assume that in (1.13) the functions I,, are
conformal mappings of A which have K-quasiconformal extensions to the
plane and which keep three fixed boundary points a1, a2, a3 of A invariant.
By Theorem 1.2.1, the mappings form a normal family. Let be the limit
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of a locally uniformly convergent subsequence fm,. In A the function f0 Is
conformal and S,0 = Jim Hence, we conclUde as above that I = h ofo,
where h is a Möbius transformation. It foUows that f also is a conformal
mapping of A with a quasiconformal extension. If I fixes Oi, 02, then
every convergent subsequence tends to f. In this case (1.13) implies that the
sequence (f.) itself converges pointwise and f(z) = tim locally uniformly
mA.

We remark that there is a certain analogy in the behavior of Schwarzian
derivatives and complex dilatations. In 1.4.6 we pointed out that locally
uniform convergence of quasiconformal mappings does not imply the con-
vergence in of their complex dilatations. On the other hand, Theo-
rem 1.4.6 shows that the of complex dilatations does imply
pointwise convergence of suitably normalized mappings.

1/

1.5. Area Theorem

Let us leave Schwarzian derivatives for a moment and establish a classical
result on univalent functions, which we shall need in estimating the norm of
the Schwarzian derivative of a conformal mapping

Theorem 1.2 (Area Tl/eorem). Letf be a univalent meromorphic function in the
domain {zJ Izi> 1}, with a power series expansion

f(z) = z + (1.14)

Then

� 1. (1.15)

The inequality is sharp.

PROOF. Let C, be the image of thç circle = p> 1 under f. The finite
domain bounded by C1, has the area

I rn,, =
$

wdW.

w = f(z) and considering (1.14) we obtau

= np2 —

As an area, rn,> 0 and the result (1.15) follows asp 1. 0
The Area theorem was first proved by Gronwall in 1914 and efficiently

used by Bieberbach two years later. It is a bistDrically significant result as it
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marks the beginning of the systematic theory of univalent functions. We need
the following immediate consequence of it:

Under the assumptions of the Area theorem,

1b11 � 1. (1.16)

Equality holds and only Vf(z) = z + eW/z.
For the extremal function of (1.16), the equality sign holds as well(1.15).

For (1.15), there are many other extremals.
The functions satisfying the conditions of the Area theorem with b0 =0 are

said to form the class E. Another important class in the theory of univalent
functions is S. which consists of functions f univalent and holomorphic in

4.he unit disc with f(O) = 0, f'(O)= 1. If fcS and f(z) = z + then
z —. q,(z) = 1/f(z2)"2 belongs to E end tp(z) = z —

a2 2,

with equality only for the Koebe functiQns z z/(1 + e"z)2.
1ff eS and gis an arbitrary conformal self-mapping of the unit disc, then

fog — f(g(O))
f'(g(O))g'(O)

belongs to S. Setting g(C) = z)/(1 + IC), we obtain by calculating a2 for
(1.18) and considering (1.17),

1(1 — — 4. S

Integration of this inequality twice leads to the estimate If(z)I � I + zfl2.
As IzI —' 1 we get the Koebe one-quarter theorem which we used already in
1.1:1.

1.6. Conformal Mappings of a Disc

By Theorem 1.1, any function holomorphic in a simply connected domain
A of the complex plane is the Schwarzian derivative of a function f which is
meromorphic and locally injective in A. It follows that can grow
arbitrarily rapidly as z tends to the boundary of A. In particular, there are
many classes of functions f for which the norm of S, is infinite. Even if f is
bounded, it may happen that II IL4 = An example is the function

z -÷f(z) = exp((z + 1)/(z — 1))

in the unit disc, for which S1(z) = —2(1 —

The behavior of (1.19) differs greatly from that of a Möbius transformation
in that (1.19) takes every value belonging to its range infinitely many times.
In contrast, a univalent f is analogous to a Möbius transformation in its
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value distribution, and it will turn out that the norm of its Schwarzian is
always finite. We shall first prove this in the case where A is a disc, a disc
meaning a domain bounded by a circle or a straight line.

Theorem 1.3. 1ff is a conformal mapping of a disc, then

II S1 II � 6. (1.20)

The bound is sharp.

PROOF. By formula (1.12) it does not matter in which disc f is defined. We
suppose that f is a conformal mapping of the unit disc D. Let us choose a
point z0eD and estimate ISj(z0)I',(z012 = (1 — By (1.9), this
expression is invariant under Möbius transformations. Hence, we may as-
sume that = 0. Also, since f can be replaced by h of, where h is an arbi-
trary Möbius transformation, there is no loss of generality in supposing that
f S. Let denote the n th power series coefficient off

The function

z —.l/f(t/z) = z + -

satisfies the conditions of the Area theorem. From b1 = — a3 we thus
conclude that — � I. On the other hand, S1(0) 6(a3 — Conse-
quently, S1(0)I � 6, and (1.20) follows.

For the Koebe functions f the coefficient b1 of z -+ 1/f(1/z) is of absolute
value 1. Hence, for the Koebe functions — a31 = 1, and equality holds in
(1.20). More generally, in D equality holds in (1.20) for all functions hofog,
where g is a conformal self-mapping of D, f a Koebe function, and h an
arbitrary Möbius transformation. In the upper half-plane, z —' f(z) = z2 is a
simple example of a univalent function for which II = 6. D

The estimate (1.20) was proved by Kraus [1] in 1932. His paper was
forgotten and rediscovered only in the late sixties. Meanwhile, (1.20) was
attributed to Nehari ([1]) who proved it in 1949.

2. Distance between Simply Connected Domains

2.1. Distance from a Disc

Let A be an arbitrary simply connected domain which is conformally equi-
valent to a disc. Even in this general case, the norm of the Schwarzian
derivative of a conformal mapping of A is always finite, but the bound may
be as high as 12.
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In order to study the situation more closely, we introduce the domain
constant

5(A) = II Sf

where f is a conformal mapping of A onto a disc. We call 5(A) the distance of
the domain A from a disc. In view of the invariance of the norm of the
Schwarzian derivative under Möbius transformations, the distance 5(A) is
well defined.

We have 6(A) = 0 if and only if A is a disc. By Theorem 1.3 and formula
(1.1 1),

for all domains A. The distance 5(A) measures how much A deviates from a
disc, or equivalently, how much a function f mapping A onto a disc deviates
from a Möbius transformation.

An illustrative example is provided by the case in which A is the exter-
ior of the ellipse {z = + k � k = 1, the
ellipse degenerates into the line segment with endpoints ± 2.) The func-
tion z -+f(z) = z + k/z maps the disc E = {zjIzI> 1) conformally onto A.
Because S1(z) = — 6k(z2 — k)" 2, follows that

5(A) = 6k.

We see that 5(A) changes continuously from 0 to 6 as k increases from 0 to 1.
Thus the range of 5(A) for varying domains A is the closed interval [0,6].

Another simple example is the angular domain A {zIO < argz < kn},
0 < k � 2. Now z —' f(z) = z" maps the upper half-plane onto A. From
S1(z) = (1 — k2)/(2z2) we obtain

5(A) — II. (2.1)

Again, 6(A) covers the whole closed interval from 0 to 6 as k grows from I to
2.

It might be expected that domains close to a disc are quasidiscs. This is
indeed the case: In section 3 we shall prove that for a K-quasidisc A the
distance 5(A) —*0 as K -+ 1, and in section 5 that all domains with 5(A) < 2
are quasidiscs.

2.2. Distance Function and Coefficient Problems

The problem of estimating the distance function 5(A) is connected with
classical problems regarding the power series coefficients of univalent func-
tions. Theorem 1.3 gave an indication of this. To make this more precise, we
first note that in view of formula (1.11), we could define 6(A) with the aid of
conformal mappings of the unit disc D onto A. Let g be a conformal self-
mapping of D, such that g(0) = Since = 1, we conclude from the
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invariance relation (1.9) that

ISf(zo)Ifl(Zo)2 =

This yields the characterization

b(A) = sup{ IS,(O)I If: D —' A conformal) (2.2)

for the distance function.
Since composition of f with a Möbius transformation does not change

ö(Á), we may further assume that f(O) = 0, f'(O) = 1 and that cc is not in A,
i.e., thatfeS. Then

S,(O) = 6(a3 (2.3)

Hence, determining ô(Á) amounts to maximizing the expression 1a3 —

2.3. Boundary Rotation

As an example of the use of the characterization (2.2) and the formula (2.3),
we shall determine the sharp upper bound for ö(A) in certain classes of
domains characterized geometrically in terms of their boundary. We shall
first introduce "boundary rotation".

Let A be a domain of the complex plane whose boundary is a regular
Jordan curve. It follows that .3A is the image of the interval [0, 2ir) under a
continuously differentiable injection y with a non-zero derivative. Let
be the angle between the tangent vector y'(t) to 3A at y(t) and the vector in
the direction of the positive real axis. We assume that y(t) describes äA in
the positive direction with respect to A as t increases. Then

diji(t) = 2. (2.4)

The boundary rotation of A is the total variation of iriji. If

I = k < 00, (2.5)
Jo

the domain A is said to have the boundary rotation kit.
For an arbitrary domain A in the complex plane conformally equivalent to

a disc, boundary rotation is defined as follows. Let A,, n = 1, 2, ..., be an
exhaustion of A, i.e., A, A,÷1 A for every n and u A, = A. Suppose that
4,, B,,, B, A, and that B, is bounded by a regular Jordan curve. For a
rixed n, let a,, be the infimum of the boundary rotations of all such domains
B,. Then the boundary rotation of A is defined to be a = lima,,. The limit a
loes not depend on the choice of the exhausting domains A,,, and it agrees
with the pre iously defined boundary rotation for domains whose boundary
is a regular Jordan curve.

Boundary rotation can also be defined directly for the above domain A in
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purely analytic terms. Let f be a conformal mapping of the unit disc D oni
A, and let

u(z) = 1 +

Then the boundary rotation of A is equal to

r
lim Iu(re'iIdq,.
F—i

Suppose that A has finite boundary rotation kit. From the finiteness of (2.7)
it follows that the harmonic function u can be represented by means of the
Poisson—Stieltjes formula. Integration then yields

f'(z) = f (O)e — 105(1 dtp(8) (2.8)

Here i/i is a function of bounded variation satisfying (2.4) and (2.5). It agrees
with the defined earlier using the tangent if 8A is a regular Jordan curve. In
integrated form (2.8)is a generalization of the classical Schwarz—Christoffel
formula for the function mapping a disc conformally onto the interior of a
polygon.

Conversely, let i,1' be a function of bounded variation satisfying (2.4) and
(2.5). Under the additional condition k � 4, a function f whose derivative is
defined by (2.8) is then univalent in D and maps D onto a domain with
boundary rotation kn.

Convex domains of have finite boundary rotation.More exactly, a
domain is convex if and only if its boundary rotation is 2it. Equivalent to this
is the assertion that the function u defined by (2.6) is positive in D or that the
function ,fr is non-decreasing.

For convex domains formula (2.8) was derived by Study in 1913. The
notion of boundary rotation was introduced in 1931 by Paatero; his. thesis
[1] contains detailed proofs for all the results in this subsection.

2.4. Domains of Bounded Boundary Rotation

Using the representation formula (2.8) we can easily estimate b(A) for convex
domains.

Theorem 2.1. If A is Möbius equivalent to a convex domain, then

� 2. (2.9)

Equality holds if A is the image of a parallel strip under a Möbius
formation.

PROOF. We may assume that A itself is convex. Let f be an arbitrary con-
formal mapping of D onto A. In view of (2.2), inequality (2.9) follows if we
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prove that 1S1(0)l 2. we may replace f by the function z cf(ze1') for
c complex and q real, there is no loes of generality in assuming that S,(0) � 0
and that f'(O) = 1.

From (2.8) we obtain by direct computation

/ '2*
S1(O) = — (2.10)

Jo JO

Since S,(0) is real and � 0, it follows that

—

+

� f — I + I sin2 (2.11)
Jo \Jo / Jo

/ '2* \2 j'2z

= f — cosOd*(O)) � � 2.
Jo \Jo / Jo

Because S1(0) � 0, we have proved (2.9).
Equality holds if

I = 2, I cosOdqi(O) = 0.
Jo Jo

These conditions are fuffilled if i/i has a jump +1 at the points 0 and ir and is
constant on the intervals (0, it) and (it, 2ir). Then Sf(O) = 2, and it follows from
(2.8) that f'(z) = (1 — 22)1. We conclude that the image of D is a parallel
strip. 0

Theorem 2.1 expresses in a quantitative manner the fact that a convex
domain is close to a disc: Its distance to a disc is at most 2, while the distance
can be as large as 6 in The general case.

Not all domains close to a disc need be Möbius equivalent to a convex
domain, as the example A = (zIO <argz < kit), k> 1, shows. Its boundary
forms two interior angles > it, one at 0 and the other at Since these angles
are preserved under Möbius transformations, A is not Möbius equivalent
to a convex domain. On the other hand, by formula (2.1) we have ö(Á)
2(k2 — 1).

Theorem 2.1 can be generalized.

Theorem 2.2. Let A be Môbius equivalent to a domain with boundary rotation
�kx. If k � 4, then

5(A) � (2.12)

The bound is sharp.
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k=2.S k=3.5

Figure 4. Extremal domains.

The main lines of the proof are the same as those in Theorem 2.1. After
similar initial remarks we start from (2.10), assuming this time that S1(0) <0.
In the first line of (2.11) we now ignore the third integral and conclude that

/ r2s \2 f'2*�
I

cosOdi/i(9))
—

cos2Odi,140).
Jo / Jo

With attention paid to (2.4) and (2.5), the estimate (2.12) follows from this
after some computation; for the details we refer to Lebto and Tammi [1],
p. 255.

From (2.8) we get for the extremal f with f(O) = 0 the representation
— (1 +

df(z)
— (i +

4— 2k1
+

s\k14+1/2

6—k I
The corresponding domain A = f(D) is symmetric with respect to the real
axis. Its boundary Consists of two half-rays in the right half-plane emanating
from a point of the real axis and forming the angle knf2 in A, and of a
vertical line in the left half-plane (Fig. 4). As k grows from 2 to 4, the vertical
line moves to the left until It disappears when k = 4, i.e., it then reduces to the
point

2.5. Upper Estimate for the Schwarzian Derivative

The use of the distance function ö makes it possible to generalize Theorem
1.3 in a precise form.

Theorem 2.3. Let A and A' be domains conformally equivalent to a disc and
f: A —+ A' a conformal mapping. Then

IFS1 IA + b(A'). (2.13)

The estimate is sharpfor any given pair of domains A and A'.

PROOF. Let h be a conformal mapping of the unit disc D onto A. Froni
f = (foh)oh1 we conclude that IISf hA = IS10,, — 5511D• Since
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U —
II '.

the triangle inequality yields (2.13).
In order to verify that the estimate (2.13) cannot be improved, we consider

conformal mappings h1: D -. A, h2: D A'. Given an s >0, we choose h1
and h2 such that

— i 1, 2. (2.14)

This is possible, because is invariant under Möbius transforma-
tions (cf the reasoning in 2.2),

Let g be the rotation z -+ Theut f maps A conformally
onto A', and

IIS,IIA=

Now

— � — —

For a suitable 9 we obtain from this and (2.14),

HS,IIA � + > 5(A') + 5(A) — 2s.

Consequently, (2.13) is sharp. 0

From Theorem 2.3 we obtain the new characterization

5(A) = S1 conformal self-mapping of A}

for the distance function.

2.6. Outer Radius of Univalence

Let us introduce another domain constant

c0(A) = sup(flS,IIA jf univalent in A}.

We call the outer radius of univalence of A. In 111.5.1 we shall also define
the inner radius of univalence of A.

Theorem 2.3 shows that there is a simple connection between the outer
radius of univalence and the distance function S (Lehto [6]).

Theorem 2.4. Let A be a domain conformally equivalent to a disc. Then

a0(A) 5(A) + 6. (2.15)

PROOF. We write the definition of o0(A) in the form

c0(A) sup{IISJIIAI.f: -. A' conformal}.
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Then it follows from Theorem 2.3 that

o0(A) = Ô(Á) + supô(A').
4,

Hence, we obtain (2.15) from Theorem 1.3. 0

•We can thus extend Theorem 1.3 to domains A for which we know 6(A).
Forinstance, iffis univalcatinthesector A = {zfO < argz <kn), 1 � k � 2,
then uS, fl4 � 2k2 +4, or if f is univalent in a convex domain A, then
QS,1L4 � 8.

Since 6(4) � 6, we see tb.t in all simply domains A and for all
functions f univalent in A, we always have'

� 12.

The maximum 12 can be attained. We must then have 6(A) 6, and extre-
mals are obtained, for instance, if we consider iuitable self-mappings of such
domains A.

As one example, let us consider the domain 4 which is the complement of
the line segment —1 x � 1) with to the extended plane. In the
discE= {wItwI> 1)

f• e"12hoh1.
Then every h, is a conformal mapping of E, and a conformal self-mapping
of A. We have

o e

From = _6eW/(w2 — and ItS,, — it follows that

If S1 HA �

12 the function

There is even a point of A, namely at which takes the
value 12.

2.7. Distance between Arbitrary Domains

Let us consider again two domains A and A' which are conformally equiva-
lent to a disc. As a generalization of the distance to a disc, we introduce the
number

ö(A,A')=inf{JIS,I)41f:A —i A' conformal)

and call it the distance between the domains A and A'.
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The triangle inequality yields the estimates

15(A) — S(A')p � S(A,A') � 5(Á) + 5(A').

Equality holds in both places if A or A' is a disc. A less trivial example of
equality in the lower estimate is provided by the angular domains

A = {zIO < argz <k,r}, A' = {zlO <argz <k'ir},

o � k � k' � 2.Iff1(z) = zk,f2(z) = z*', then ofr1 is a conformal mapping
of'A onto A'. Hence

S(A, A') � It S12 — = 2(k'2 — k2).

If k'� I or if k� 1, we have 2(k'2—k2)=2(1—k2)---2(t—k'2)——
(ö(Á) — c5(A')(, so that in these cases b(A,A') = 15(A) — S(A')I.

If k> 1, k < 1, then 2(k'2 — k2) = 5(A) + 5(A'), but .S(A, A') is presumably
smaller.

Let Cl. be the quotient of the set of domains conforinally equivalent to a
disc by the group of Möbius transformations. The equivalence class cOn-
taining all discs can be called the origin of i) and our previous function 5(A)
the distance to the origin of the equivalence class which contains A.

It is an open problem whether

S(A', A') =0

implies that A and A' are Möbius equivalent. If the answer is affirmative, then
(Cl, ö) is a metric space. Another open problem is to determine the diameter
of Cl.

3. Conformal Mappings with Quasiconformal
Extensions

3.1. Deviation from Möbius Transformations

Let f be a sense-preserving of the extended plane onto
itself. 1ff is conformal then f is a Möbius 1ff is
a quasiconformal mapping dilatation ,z is small in absolute
value, we know that f behaves almost like a mapping; we
remind the reader of the geometric interpretation, of in 1.4.1.
Thus the number can be regarded as a measure for the deviation off
from a Möbius transformation.

Suppose now that f is quasiconformal in the extended plane with complex
dilatation jt and that, furthermore, f is conformal in a simply connected
domain A. From the results in the preceding sections we know that there is
another measure for the deviation of f from a Möbius transformation, its
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Schwarzian derivative: If the norm II is small, then at least in A the
mapping f is Möbius transformation.

It turns out that norms 13 II and IIS,IA are closely related. If II
1

is

small, then so iS i.e., the behavior of f in the coraplement of A, which
contains the support of JI, is reflected m the behavior of f in A (Theorem 3.2
in this section). Conversely, 1ff is conformal in a quasidisc A and 11S11L4 is

small, then f can be extended to a quasiconformal mapping of the plane with
a small fl it II (Tfieorem 4.1 in the following section).

The study of the relationships between complex dilatations and Schwar-
zian derivatives will be one of the leading themes of this monograph. Apart
from its intrinsic interest, the possibility of using these two apparently dif-
ferent measures of the deviation from Möbius transformations is important
in the theory of Teichmüller spaces.

3.2. Dependence of a Mapping on its Complex Dilatation

In studying the effect of the complex dilatation on the Schwarzian derivative
we need a result detailing how a quasiconformal mapping changes when its
complex dilatation is multiplied by a complex number. We consider the
normalized case of Theorem 14.3 and make use of the representation formula
given therein.

Theorem 3.1. Let be a measurable function in the plane with bounded support
and < 1. Let z -+ f(z, w) be the quasiconformal mapping of the plane with
complex dilatation and with the property lim(f(z, w) — z) 0 as z —p x.
Then,for every fixed z the function w —+ f(z, w) is holomorphic in the disc
[wf < l/F(uL.

Also,for every fixed z outside the support of the analvfic

function z -+ f(z, w) depend holomorphically on wfor < I / jJ j.t 33

PROOF. By Theorem 1.4.3,

f(z) f(z, 1) = z +

where we now write instead of to accentuate the dependence 0! on
p. From the defii,ition of the functions it follows that

Hence,

f(z, w) = z + >:

From formula (4.! i) Ifl 1.4.4 we see thit converges uniformly
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whenever < 1. It follows that the power series (3.1) converges if
I wf < 1. Consequently, w f(z, w) is analytic in the disc WI < 1/Il (I

Outside the support of p. the funbtion z —' f(z, w) is a conformal mapping.
Also, each function z —+ is holomorphic, and is no longer a
singular integral. Therefore, we can differentiate in (3.1) with respect to z term
by term, without affecting the convergence of the series. If prime denotes
differentiation with respect to z, wc obtain

f'(z, w) = 1 +

and similarly for higher derivatives. It follows that all derivatives of z -. f(z, w)

depend holomorphically on w in the disc Iwl < 0

Theorem 3.1 makes it possible to study the dependence of the power series
coefficients of z —' f(z, w) on w. Let

f(z,w) = z +

in a neighborhood of infinity. Then the coefficients w —* are holomorphic
in Iwl <

To prove this we first note that if f is analytic for Izt > R, then z —, f(Rz)/R
is in class Z. Therefore, we may assume without loss of generality that f
satisfies the conditions of the Area theorem.

First of all, we have

bin z(f(z, w) — z).

Here the convergence is uniform n w, because Schwarz's inequality and the
Area theorem yield the estimate

• I
Iz(f(z,w)—z)—b1(w)j2� 2IzI 1

By Theorem 3.1, the function w -. z(f(z, w) — z) is holomorphic ft4W1
for every fixed & Hence w —' b1(w) is bolomorphic, as the udiform

limit of holomorphic funCtions. The analyticity of w -. b,,(w) is deduced simi-
larly from

*.-I
— lim za(f(z, w) — z — b/w)zJ)

by induction.
The special normeftllon of the mappings is not essential in Theorem 3.1.

Corollary 3.t Let a r4easurable function in the piane which vanishes in the
upper and jbr which flpIL, < 1. Letf,1,, be the quasiconformal map-s
ping of the p1mm. t.Mmmmplex dilatation which keeps the points 0, 1, 00
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fixed. Then the function w —, is holomorphic in wf < I p for every
finite z.

PRooF. Let g be the Möbius transformation which maps the points 0, 1,
on the points —1, 1, 1, respectively, a quasiconformal mapping of the
plane whose complex dilatation wv agrees with that of o g'. Then

p(z) = v(g(z))g'(z)/g'(z).

Further, let satisfy the normalization condition — 0 as
By Theorem 3.1, is analytic in < = l/II.uL.

Set a1 = 1), a2 = a3 = and

h
— a2 — a3 C— a1

— a2 — a1 —

Then has the complex dilatation wp, and it fixes 0, 1, Conse-
quently,

=

By applying Theorem 3.1 again, we conclude that depends analytically
on w. It follows that w .-. is holomorphic in the disc claimed. 0

From = h,.,, o o g we also deduce that for every z in the upper half-
plane, the derivatives of z — depend holomorphically on w in the disc
Iwl <

Remark. Theorem 3.1 (and Corollary 3.1) can be generalized: The mapping
depends holomorphically on w if its complex dilatation p(, w) is a holomor-
phic function of w. We shall not need the result in this generality. (A proof,
which is still a straightforward application of the representation formula
for f(z, w), is in Lehto [3].) For most of our applications, the simple case

w) = wp(z) is suflicient, but in V.5 we shall also be dealing with complex
dilatations of the form wp + v. In this case, the generalization of Theorem 3.1
is immediate.

More precisely, let us assume that p and v vanish outside of a disc and that
Hi'L < 1, If vL < 1. Now + v) = 1 = 1, 2, ..., where P, is a
polynomial in w of degree i. We again use the fact that converges
uniformly whenever fi <1. It follows that in the representation

f(z, wp + v) = z +

the right-hand series is uniformly convergent in w, provided that II wp +
< 1. We conclude that for every finite z, the function w —+ f(z, wp + v) is

holomorphic in the disc I <(I —
By using this result we see that in Corollary 3.1, the complex dilatation wp
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can be replaced by wp + v. Also, the holomorphic dependence of the deriva-
tives on the parameter w remains in effect if wp is replaced by wjt + v.

Ahifors and Bers realized that in the theory of Teichmüller spaces it is of
basic importance to study quasiconformaj mappings with varying complex
dilatations. In their joint paper [1] they proved the holomorphic dependence
of the mapping on its complex dilatation.

3.3. Schwarzian Derivatives and Complex Dilatations

Using Theorem 3.1, we can prove a result which shows that a small complex
dilatation forces the Schwarzian derivative to be small.

theorem 3.2. Let f be a quasiconfosmal manping of the whch has the
complex dilatation p and which is conformal uz a simph' connected domain A
with at least two boundary points. Then

tSf}A IA � (3.2)

PROOF. If q is a Möbius transformation, we Lan replace j by without
changing the norms of either the Schwarzian derivative or the complex
dilatation. Also, c A.

Then p has bounded support.
Let w be a complex number with Iwl < 1. We for a moment the

unique quasiconforrna! mapping z f(z, will of the plane which has the
complex dilatation and the property 1(z. — z —+0 as
z —. cia. (We may assume that > 0.) By Theorem 3.1, the of
the analytic function z —' (f I

A)(z, w/ll /A II with respect to z depend analyti-
cally on w in the unit disc, at every finite point z of A.

Keeping z fixed, we define the function

w —+ = Sf(.,

Since S1 is a rational function of the first three derivatives of fI A, we conclude
that is analytic in the unit disc Iwt < I. the function ii' is
bounded: � From the fact that : f(z.O! the identity map-
ping it follows that = 0. We can therefore apply lemma to if.'
and get

� ao(A)iwl.

Setting w — IIpL. we get back, modulo a transformation, the fur.c-
tion z --+ f(z) we started with, and (3.2) follows. 0

If A is a disc, (3.2) assumes the form

IISIIAII

(Kühnau il], Lehto [I]). The bound is sharp: For each k, 0 � k < 1,
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there are mappings f for which II = 6k. For instance, in. tbe as
A = (zUzI> 1) the function f defined by

if f(z)=z+ki if tzI�1, (3.3)

is such an extremal. Other extrernals are obtained if this (is composed with
Möbhis tran*formatidns.

Using Theorem 3.2 we can estimate ö(Á) for quasidiscs.

Theorem 33. If A is a K-quasidisc, then

K2—t
ö(A)�6K21. (3.4)

PROOF. By Lemma 1.6.2, the domain A is the image of the upper H
under a K2-quaslconformal mapping! of the plane which is conforma) inK.
By Theorem 3.2,

f
On the othcr hand, 11,1 = öi.4). 0

It is not known whether the bound in (3.4) is sharp. From the example (3.3)
we deduce that the sharp bound is � 6(K — t)/(K + 1). In any event,
equality (3.4) shows that for a K-quasidisc 4, the distance ô(Ä) —' 0 as K —' 1.

3.4. Asymptotic. Estimates

Application of the representation formula (3.1) and reasoning similar to that
used in proving TheOrem 3.2 make it possible to obtain readily a number of
results for conformi.t mappings with The rest of
this section will be levoted to questions of this type. This entails a
detour from main then)e, the connedion between Scbwarzian denvatives
and complex thlatations.'

Let us consider mappings f which betong to E; i.e., fis
univalent in E = {zflzl > 1) and has power series expansion of

in E. 1ff has a quasiconformal extension to the plane with complex dilatation
p satisfying the inequality II a. � k < I, we say that f belongs to the subclass

of £. By abuse of notation, we sometimes use the symbol f both for the
conformal mapping of E and for its extension to the plane.

We shall first derive asymptotic estimates for — ri and in as
k 0.
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Theorem 3.4. Letf E and k <k0 < I. Ask 0,

f(z) = z — if + 0(k2) (3.6)

in the whole plane. Here I0(k2)I � ck2, the constant c depending only

PROOF. If p> 2 and < 1, we seefrom formula (4.15) in 1.4.4 that

EITq,,(z)I � � ck2.

Hence, Theorem 3.4 follows from Theorem 1.4.3. 0

Corollary 3.2. ThefunctionsfE Ek satisfy the asymptotic inequality

(f(z) —zi

� RJJDR_ZI
+ ck2. (3.7)

=
K — zI

a.e., (3.8)

then

lf(z) — zi
=

2VJJDIC_ZI + 0(k2).

For z = 0, the estimate (3.7) gives � 2k + ck2. The mapping with
extremal (3.8) can be determined:

— Jz + k2e2/z if frI.> 1,

+ — 1) + k2e2i if frI �1.

Hence (f(O)( = 2k. These functions I arc not only asymptotically extremal
but they actually maximize (1(0)1 in (Kühnau (23, Lchto [3)).

For the coefficients b,, in (3.5), a counterpart of (3.7) can also be easily
established. .

2kIbAI�41 +ck2, n=1,2,..., (3.9)

with c — k)1. If
— + if zI> I,

3 10f5(z)
— + if (zI � 1,

2k/(n + 1).
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PROOF. We have

=

for IzI> 1. Hence,

=
,fJ

(3.11)
R,..1 D

Mcbwarz's inequality and the estimate (4.13) in 1.4.4 for p = 2 (in which case
NH)1,=l)yield

ff � ltfl �
J JI,

Consequently, we have the asymptot c representation

= + 0(k2), n = 1,2,...,

the remainder term being. �n"2k2/(l — I:) in absolute value. From this (3.9)
follows.

We conclude by easy computation that bN = 2k/(n + 1) + 0(k2) if

a.e.

Direct verification shows that the function f,, defined by (3.10) has this com-
plex dilatation. We also see that for j, the Coefficient b1 = 2k/(n + 1). 0

Inequality (3.9) was established by Kühnau [2] using variational methods.
Note that the function. (3.10) are related to each other by

f(z) = = 1, 2

Along with the functions z —, are also extremal. Some
extremal domains arc pictured in 5.

In 3.6 we shall make a few more remarks on the coefficients b,, in

Figure 5. Extrcmal domains fork

n1 na2

n — 23
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3.5. Majorant Principle

By the Area theorem, the coefficients of a function fe satisfy the inequality
� 1. It follows that

1

f(z) — zI � = (3.12)

We conclude from Theorem 1.2.1 that is a normal family. The estimate
(3.12) also shows that E is closed, i.e., it contains the limits of its locally
uniformly convergent sequences.

Every subfamily is then also normal. Applying Theorem 1.2.1 once more
we infer that the functions of extended quasiconformally to the plane with
H p 1 � k, constitute a normal family. This implies that every is closed
also.

Let D be a complex-valued functional defined on We say that .D is
continuous if .-* whenever fM(z) f(z) locally uniformly in E. For
a continuous D, there are extremal functions which maximize in Ek.
This follows immediately from the fact that Ek is a closed normal family. We
set

= max I'I'(f)l.
fEE,,

Clearly M(k) is non-decreasing in k.
Let us assume, in particular, that is a holomorphic function of finitely

many of the power series coefficients of f.and of the of f and its
derivatives f', f", ..., at finitely many given of E. We call such

analytic. An analytic functional is continuous, because uniform
convergence of analytic functions implies uniform convergence of their de-
rivatives. An example of an analytic functional is G(f) = (1z12 —. I)2Sf(z),
considered in Theorem 3.2, which is. a rational function of f'(z), f"(z) and
f" (z).

Applying Schwarz's lemma as in the proof of Theorem 3.2, we get the
following general result (Lehto [3]).

Theorem 3.6. Let d be an analytic functional on E which vanishes for the
identity mapping. Then M(k)/k is non-decreasing on the interval (0, 1).

PROOF. Fix k and k , 0 <k <k' < 1, and choose an arbitrary mapping f0 e .

Let p he the complex dilatation of extension off0, p � k. Consider
the mappings which have ihe complex dilatation wj.z with IwI <k'/k.
By Theorem 3.1, depends holomorphically on w in the disc <k'/k.
if w 0, then f is the mapping, so that D(f) vanishes at w = 0.

Therefore, by Schwarz's 1cm
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For w = 1 we have f = Jo. Since is an arbitrary element of , we get the
desired inequality M(k) � kM(k')/k'. 0

Corollary 33 (Majorant Principle). Is an analytic functional on which
vanishes for the identity mapping, then

kmaxib(f)I. (3.13)
feE, feZ

If equality holds for one value k e (0, 1), then it holds for all values of k.

PROOF. Inequality (3.13) follows ithmediately from Theorem 3.6 if we let
1.

Suppose that equality holds in (3.13) for some value k, 0 <k < 1. Let fk
be extremal in this Ek and the dilatation of its extension. For
functions f with complex dilatation Iwl < 1/k, Schwarz's lemma gives

� kM(1)IwI, where M(1) = over L But now equality holds
for w = 1. Ii follows that

= kM(1)IwI (3.14)

in the whole disc < 1/k. If k' e [0,1) is arbitrarily given, then for w = k'/k
the function f is in E'.. Combining (3.13) and (3.14) we deduce that I is
extremal in E'.. In other words, if equality holds in (3.13) for one value
k (0, 1), then it holds for all values of k, and if is an extremal complex
dilatation, then all dilatations < are extremal. U

3.6. Coefficient Estimates

Let us illustrate the majorant principle (3.13) with an example. We choose
•(f) b5, for an arbitrary fixed n. This is admissible, because every is
zero for the identity mapping. It follows that

max)b1 � kmaxlbj. (3.15)
I

Assume that for a fixed n, equality holds for some k > 0. By what was said
about equality in (3.13), equality then holds for all values of k. It follows that
the extremal for k is k/k0-times the extremal Ib,,I for k0. Furthermore,
is an extremal dilatation for k0, then wt0 is extremal for k with IwI = k/k0.
Now consider the formula (3.1 1). If is replaced by then is multi-
plied by the power w'. It follows that all terms in the series (3.11) vanish,
except for the first one. But then 2k/(n + 1), and by (3.15),

= 2/(n + 1).

This is to be true if n = 1, 2. (For classical results on univalent
functions we refer to Duren's monograph [1], which also contains an exten-
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save - +1) for
Theorem 3A n 1,2.

Thus in mm4b1l In Z, maxlb,I 112 + 1',
whereas in Ek, k that maxlb,I is strjctl)I a, than
k(1/2 + e'). For a 4, J unimown both in apd' X,. Prom
Theorem 3.5 it

for all values of a.
Tbc Area t for Z,. Gctting its sharp form

requires a ottha reasoning which led to (3.13).

The estimate is shdrp.

PRooF. Given an arbitrary function leEk with the coefficients we set
if b,, other Letu be thecomplexdilaletioá of

the extended f, and b(w) the of the function z-if(z,w/k) with
2:-normalization and complex dilatation w,s/k.

For an arbitrary positive integer N, we write
N

i—i -

By Theorem 3.1, is holoniorphic m the unit The Area theorem gives
the estimate 1. Since b(O)=O, the functi9n hssazero of order
� 2 at the origin. Schwarz's lemma therefore yields the improved àtimate.

I*(w)I � (3.17)

If we set w = we getback thefunctionf with which we started. Hence
N N

The desired inequality (3.16) follows as N -.

in Izi � 1. A relatively simple argument shows that there are no other cx-
tremals (Lehto [1]). 0

The result (3.16) is due to Kuhnau [2] and Lehto [1].
In V.7.5 we shall again use an estimate of type (3.17) in connection with.

another problem where we know that the Jiolomorphic function under con-
sideration has at least a double zero at the origin.
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The general inequality (3.13) allows many other applications. For instance,
the classical Grunsky and Golusin inequalities in E can be immediately
sharpened for It is also possible to change the original setting and use
other normalizations for the mappings. If we consider the class S instead of
E and define the subclass Sft of S in the same way we defined Ek, a difficulty
is encountered, because the complex dilatation of the extended mapping does
not determine the element of uniquely (S contains many Möbius trans-
formations). Unique correspondence follows, for example, if we require that
the extended mappings fix For this subclass Sk( we can sharpen a
number of results known to be valid in S. (For various applications of the
majorant principle, see e.g. Lehto [3], [5].)

Univalent functions with quasiconformal extensions can also be studied by
use of variational techniques. Compared to (3.13), such methods often involve
much more laborious computations, but are essentially better in many cases
where (3.13) fails to give a sharp result. Kühnau is a pioneer in this field. He
has had many successors, so that an extensive literature exists today. Delving
into these questions would take us too far afield from our main topic, and we
content ourselves here with mentioning, besides Kühnau's works [1] and [2],
the papers of Schiffer [1] and SchifTer—Schober [1], the lecture notes of

[1], and U e monographs of Pommerenke [1] and Krushkal—
Kühnau [1] among othets.

4. Univalence and Quasiconformal Extensibility of
Meromorphic Functions

4.1. Quasiconformal Reflections under Möbius
Transformations

Theorem 3.2 establishes a relation between complex dilatations and Schwar-
zian derivatives in one direction: If a quasiconformal mapping of a plane
which is conformal in a simply connected domain A is close to a Möbius
transformation in the sense that fls complex dilatation is small, then it is close
to a Möbius transformation also in the sense that its Schwarzian dçrivative
is small in A.

We shall now establish a result in the opposite direction: 1ff is meromor-
phic in a quasidisc A and has a small Schwarzian derivative, then .f is
univalent and can be extended to a quasiconformal mapping of the plane
with a small complex dilatation. We shall then complement this result by
proving that the result does not hold for a simply connected domain A unless
A is a quasidisc.

The extension of f is carried out by means of smooth quasiconformal



80 . U. Function5

reflections. We. begin by studying the behavior of quasiconformal reflections
under conjugation by Möbius transformations.

Let C be aquasicircle boundMb the domains A1 and A2 and a
K.quasiconformal reflection in C. If.h is a Möbius transformation, then

= ho çic o,lr' is a quasiconformal reflection n h(C). Using the identity

h(z1) — h(z2) = —z2),

valid for allMöbius transformations, we shall establish two formulas, both of
which reveal invariance properties of quasiconformal reflections with respect
to Möbius transformations. - .

Writing C = h(z), Co = h(z0), we conclude from = h(*(z)) that —

Co = — Zn). Hence

— Co — (h'(*(z))'\112 *(z) —

C—C0 k h'(z) I
Now fix Z0E C, such that 20, h(z0) oo, and let z —' Then also
and we obtain our first invariance

linisup — Co = lim sup
#(z) — Z0

(4.1)
C—C0

If C passes through then by formula (6.2) in 1.6.2

—
c1(K) (4.2)

z-•zo

with a finite constant c1(K) depending only on K. The invariance (4.1) shows
that inequality (4.2) holds for all K-quasiconformal reflections.

In order to derive the second invrriance property, we assume that is
continuously differentiable off C. From (z) = dq(C) we then obtain

d.fr(z)/dz = (0/dc.

Combined with the identity q'(C) — C = (h'(,4r(z))h'(z))1P(*(z) — z), this yields

— =
—

Finally, let f be a locally injective meromorphic function in A2. If f =
Jo h1, then S1(çli(z)) = and we arrive at our second invari-
ance

(çli(z) — z)2
di/i(z)

= — C)2
d(p(C)

(4.3)

This invariance gives an estimate which will be needed in what follows:
Let C be a K-quasicircle bounding the domains and A2. There exists a

quasiconformal reflection ,,li in C such that, for every function f meromorphic
and locally injective in A2,
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I*(z) — zI2Id%fr(z)/dzl � c(K)IIS,HA. (4.4)

at each point ze A1, z oo). Here the finite constant c(K) depends
only on K.

If C passes through oo, We téke = q as in Lemma 1.6.4. Then (4.4):.
follows directly from the formulas (6.1) and (6.4) in 1.6. If C is bounded, we.
choose the Möbius transformation h so that e h(C). We then obtain (4.4)
from the invariance formula (4.3), because II S1 = uS1 0

4.2. Quasiconformal Extension of Conformal Mappings

We can now prove the main result on the role of the Scbwarzian derivative
for the univalence and quasiconformal extension of meromorphic functions
(Ahlfors [4]).

Theorem 4.1. Let A be a K-quasidisc. Then there is a constant c(K) > 0,
depending only on K, such that every function f meromorphic in A with the
property

US, hA <e(K) (4.5)

is univalent in A and can be extended to a quasiconformal mapping of the plane
whose complex dilatation satisfies the inequality

Hi' II

�
(4.6)

PROOF. Let f be mereitorphic in A. We may assume that f is locally injective
and that does not lie in A. Let w1 and w2 be solutions of the differential
equation w" + S,w/2 = 0 in A so normalized that w1 — w2w'1 = 1. In
proving Theorem 1.1 we showed that = 5,. It follows that I is the
composition of w1/w2 with a Möbius transformation. We may therefore take
I = wi/w2.

The desired extension off is obtained by an explicit construction. In order
to circumvent the difficulty arising from the fact that we have no a priori
knowledge about the behavior off on the boundary of A, we resort to an
approximation procedure. We assume first that w1, w2 and I are holomor-
phic on the boundary of A. Having proved the theorem under this additional
condition, we obtain the general result by exhausting A with subdomains
which are K-quasidiscs and on whose boundaries f has no poles.

Let A1 denote the complement of the closure of A and a quasiconformal
reflection satisfying (4.4); the domain A now, plays the role of A2 in the earlier
discussion. We write z = and define a function g in A1 by

— + (C —

— W2(Z) + —
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At infinity, g is defined as its limit: g(cx)) = We prove
that g is desired continuation off if (4.5) holds for an appropriate 4K)

It is immediate that o(C) -. f(z0) as approaches a boundary point eM.
Moreover, if is a finite point of A1 and u(C) 00, then g a continu-
ously differentiable at In view of the relations w1w — = 1 and

• w1" = 1 1,2, we obtain by direct computation

8 (C
— 1

g
+ (C — z)w(z))2

(C) — —
S,(z)(C —

g

From this we get an estimate for the complex dilatation p = With
c(K) the constant in (4.4), we choose s(K) = 1/c(K). It then follows from (4.4)
that

� II S1H4 <1. (4.8)

We see from (4.7) that with this e(K), we have #0. Thus the Jacobian
= 18912(1 — is positive at Hence g is injective at every finite point C

at which oo. By symmetry, 1/g is injective at every finite point of A1
which is not a zero of g. Consequently, g is injective at all finite points of A1.
By considering the function C —. g(1IC) we conclude that g is locally injective
at also, and hence throughout A1.

Define a function F by F(z) = f(z) in A u t3A, and F(z) g(z) in A1.
Then F is iocally injective in A and in A1. Since F(z) 00 On 8A, the set
E = {zlF(z) = x,} consists of only finitely many points.

Let z0 be an arbitrary point of OA. Considering (4.2) we deduce by direct
computation that

— f(z0)
= f'(z0).

C—zo

Applying (4.4) for z f(z) = log(z — we conclude that (C — —sO

and (C — —sO as C —, z0. Consequently, by (4.7), ög(O —, f.'(z0) £hd
ôg(C) —.0 as C z0. We conclude that F is continuously differentiable on 8A,
and hence everywhere outside E. On 8A we have J,(z) = If'(z)12, and so F is
locally injective throughout the plane.

By the existence theorem for Beltrami equations (Theorem 1.4.4), there is a
quasiconformal homeomorphism w of the plane which has the same complex

F a.e. The function p = F o satisfies the Caucby—Eiemann
equation. 0 a.e. As a quasiconformal mapping has L2-derivatives.
Since thó of F are continuous outside E, we conclude that outside
the the function p has L2-derivatives. By the remark made
in with formula (4.5) in 1.4.3, sp is analytic in the complement
of p is continuous everywhere, the points of w(E) cannot
be essential singularities, and it follows that q is meromorphic throughout
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the extended plane. Hence, .p is rational, and being locally injective, it is a
Möbius transformation. We conclude that F = ow is a quasiconformal
homeomorphism of the plane. This proves the theorem, provided that I is
holomorphic on the boundary of A.

4.3. Exhaustion by Quasidiscs

in order to complete the proof, we shall nowshow how to relax the restrictive
assumption that f is holomorphic on Since A is a K-quasidisc, there
exists a K-quasiconformal mapping of the plane under which the unit disc
maps onto A. It follows that there is an increasing sequence of positive
numbers r,, < 1, n = 1, 2, ..., tending to 1, such thatthe image of each circle
fw( = isa K-quasicircle on whichf(z) # Let A1,, and A,, A denote the
complementary K-quasidiscs bounded by this quasicircie. As n —'cx, the
domains A,, exhaust A.

We proved in 1.1.1 that the Poincaré density is smaller in A than in its
subdomain A,,. Therefore,

IS, hA. (4.9)

It follows that condition (4.5) can be applied to f IA,. If we choose c(K) as in
the above proof (note that e(K) depends only on K, not on A), we conclude
that f IA,, agrees with the restriction to A,, of a quasiconformal mapping F,,
of the plane.

Let p,, be the complex dilatation of F,,. By (4.8) and (4.9)

lISf hA <
2 — c(K)IISfIIA e(K)

We see that the maximal dilatations of the quasiconformal mappings F,, are
uniformly bounded. Thus these mappings constitute a normal family. The
limit of a locally uniformly convergent subsequence is a quasiconforinal
mapping of the plane whose restriction to A is f. Its complex dilatation also
satisfies (4.8), i.e., (4.6) is true and the theorem is proved. 0

4.4. Definition of Schwarzian Domains

Theorem 4.1 leads to the question whether the condition that A be a quasidisc
is necessary for the conclusion that a meromorphic function with a small
Schwarzian derivative is univalent in A and has a quasiconformal extension.
Or we may restrict ourselves to classical complex analysis and pose the
simpler question: In which domains does a small Schwarzian derivative
imply univalence?

Let us introduce the following definition: A simply connected domain A
with more than one boundary point is called a Schwarzian domain if there is
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a positive constant such that every meromorphic function f with I S1fl A e

is univalent in A. More precisely, we say that A is then an e-Schwarzian
domain. This notion is due to Gehring [2].

Theorem 4.1 tells us that every quasidisc is a Schwarzian domain. It was
for a long time an open problem whether or not this sufficient condition was
also necessary, and few conjectures were expressed favoring either direction.
Finally, in 1977, Gehring [2] solved the problem by proving that every
Schwarzian domain is a quasidisc. Thus a small Scbwarzian derivative forces
a function to be univalent in A if and only if A is a quasidisc. This is one of
the unexpected characterizations of quasidiscs in terms of analysis we were
talking about in 1.6.7. Unexpected, because it shows that quasiconformal
mappings are intrinsic to the problem of relating the injectivity of meroinor-
phic functions to their Schwarzian derivative, a problem which on the sur•
face has nothing to do with quasiconformality.

We shall now present Gehring's proof, which is based on the fact that a
linearly locally connected domain conforinally equivalent to a disc is a qua-
sidisc (cf. 1.6.4 and 1.6.7).

4.5. Domains Not Linearly Locally Connected

Topological properties of plane domains can often be expressed in analytic
terms with the aid of the complex logarithm. We shall derive a result of this
type for domains which fail to be linearly localiy connected with a given
constant. (For the definition of linear local connectivity, see 1.6.4.)

Lemma 4.1. Let A be a simply connected domain which is not linearly locally
connected for a constant c> 1. Then there are two points z1, z2 of A and two
finite pouzts w1, w2 outside A, such that the function z —+ h(z) = log((z — w1)/
(z — w2)) satisfies the inequality

Ih(z1) — h(z2) — 21a1 � (4.10)

PROOF. It follows from the assumption and from the definition of linear local
connectivity that there is a disc D(z0, r) with the Either
there_are two points Pi and P2 lfl A D(z0, r) which cannot be joined in
A D(z0, cr), or else there are two points in A\D(z0, r) which cannot be
joined in A\D(z0, rfc). Suppose initially that the former alternative is true.

Consider the line segment with endpoints Pt' P2 and a simple arc in A from
to P2 which meets the line segment at frnitely many points only. Among

these points of intersection there are two adjacent, 21 and z2, which cannot
be joined in A D(z0, cr). Let be the line segment with endpoints z1, and
/1 the subarc from 22 to of the arc joining Pj and p2. Then ufl bôwids
two Jordan domains A1 and A2; we assume that infinity lies in A2.
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For brevity we write D(z0, Cr) = U. Suppose that there are points w1 E t3U

A,, i = 1, 2, in the complement CA of A. Then

h(z,) — h(z2)
= J

((z — w1)1 — (z — = 2iti(n(w1) — n(w2))

j((z — wi)' — (z —

where n(w1) is the winding number of a u fi with respect to Since w1 e A1,
w2 have n(w1) = n ± 1, n(w2) 0. It follows that

Ih(z1)—h(z2)—2nnil� ( '
+

(4.11)

Because a c D(z0, r) and w1, w2 e ÔD(z0, cr), we see that Iz � (c — 1)r
for every z a. Therefore

f (
1 + 2

____.

(4.12)
J,,\jz—W1) Jz—w21J c—i

If n = 1, we thus get (4.1O) from (4.11) and (4.12). If is —1, we obtain (4.10)
by interchanging the roles of w1 and w2.

We still have to prove that it is possible to find points w1 E .3U A1 which
are not in A, i.e., that

i=1,2. (4.13)

This requires topological arguments.
We first observe that, because a U and fi has points outside the closure

of U, the curve a u $ meets ÔU in at least two points. By Kerókjártó's
theorem (Newman [1], p. 168), each component of the complement of
a u u au is a Jordan domain. In particular, each component of A1 n 11 is
a Jordan domain. Since a Jordan domain is locally connected at every bound-
ary point, there is a neighborhood V of z1 such that each pair of points in
A1 V can be joined in A1 U. Let ZEA1 n V and let A'1 be the z-component
of A1 U. Every point p of A1 Vcan be joined with z in A1 U, and the
joining arc lies in A'1. It follows that p E A'1, and so A1 V A'1 V, i.e., A'1
is the only component of A1 n U whose boundary contains z1.

If z'€ci, we can join z' and z1 by an arc whose inner points lie in A1 U.
Then this arc is in the closure of A'1. Hence z' ÔA'1, and we conclude that
a c 0A',. If y is the complement of a with respect to then y c Au

r. A1). On the other hand, y joins z1 and in the closure of U. Thus y is
not contained in A, and (4.13) follows for i = 1. Similar reasoning yields (4.13)
for i = 2.

Finally, we have to consider the case in which there are two points in
A\D(z0, r) which cannot be joined in A\D(z0, nc). Let 1(z) = z0 + 1/(z — z0).
By what we just proved, there are points C2 in f(A) and points t1, t2

outside f(A), such that the function z -÷ g(z) log((z — t1 )/(z — t,)) satisfies
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the inequality

— — 2iriI � . (4.14)

If = = f'(t1), I = 1, 2, then direct calculation yields

h(z) = g(f(z)) +
10gZO — W1

zo — w2

•Hence, (4.10) follows from (4.14). El

4.6. Schwarzian Domains and Quasidiscs

The result we set out to prove can now be established without difficulty.

Theorem 4.2. A Schwarzian domain is a quasidisc.

PROOF. Let A be an a-Schwarzian domain. Then A is trivially d-Schwarzian
for a' a. We may suppose, therefore, that a � 2. (In 111.5 we shall show
that, in fact, no domain A is a-Schwarzian for a> 2, but here this result is not
needed.) Nor is there any loss of generality in assuming that does not lie
in A.

We shall show that A is linearly locally connected with constant

c = I + 16/a. (4.15)

The theorem then follows from Theorems 1.6.5 and 1.6.6. More precisely, we
conclude that an a-Schwarzian domain is a K(a)..quasidisc, wheTe the con-
stant K(a) depends only on a.

The proof is indirect. Suppose that A is not linearly locally connected with
the constant c = I + 16/a. By Lemma 4.1, there are points z1, z2 in A and w1,
w2 outside A, such that (4.10) holds. Clearly h(z1) h(z2).

Define

f(z) b

Then f(zj)/f(z2) = I, so tbatf is not univalent.
From S1 = — b2h'2/2 + Sh we get by an easy computation

1 —b2( w3 —w2
Sf(z)

2 — W2))

If denotes the Poincaré density of A, t;ien formula (1.5) in 1.1.1 the
estimate � 8jb2 — (4.16)

Since a � 2, we see from (4.15) that c — I � 8. Then Ih(z1) — h(z2)I �
2ir — 1/2, and so
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4* 4 1

lb—li �(
1/2) < 5(c—

It follows that

21 4 a
1b2—1i<—lO5(c—l) 8

We conclude from (4.16) that iJS1 <a. Since A is an domain,
f is This is a contradiction, and so A is linearly locally connected
with the constant c = I + 16/a. 0

The effóct of the Schwarzian derivative on the univalence and 4uasicon-
formal ext"nsion of meromorphic functions will be studied in More detail in
sections 111.4 and 111.5.

5. Fun'ctions Univalent in a Disc

5.1. Quasiconformal Extension to the Complement of a Disc

Certain special curves admit simple quasiconformal reflections. In such cases
Theorem 4.1 can be expressed in a more explict form. Particularly imporlant
is the case where the domain is a disc. From the expression for the complex
dilatation of the extended mapping in this special setting we shall draw in
Chapter V important conclusions regarding the of Teichmuller spaces.

Theorem 5.1. Let f be meromorphic in a disc D. If

fl Sf 2,

then f is univalent and can be extended to a quasiconformal mapping of the
plane. The constant 2 is best possible.

If D is the unit disc, there is. an extension with complex dilatation

— 1z12)2S1(z) . (5.1)

for z in D, while if D is the upper half-plane, an extensionexists with

= --2y2Sy(z) (5.2)

for z in D.

PRooF. Suppose first that D is the unit disc. In this case we have thç simple
quasiconformal reflection C I/c. More precisely, in proving Theorem 4.1
we use in the approximation stage of the argument the reflection =

< 1. By letting —+ 1, we then obtain Trom (4.7) the expression (5.1) for the
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complex dilatation p Since II = 11sf 11/2, it follows that we can
take = 2.

After this it is clear that = 2 (= e(1)) will do for any disc, because all
discs are Möbius equivalent. —

If the domain is the upper half-plane, we have the reflection *. In this
case (4.7) yields the expression (5.2) for p.

In order to show that the bound 2 cannot be replaced by any larger, we
consider the function z —+ f(z) = log z in the upper half-plane H. This func-
tion f is univalent, and from S,(z) = (2z2)1 it follows that JIS,II = sup2y2/
1z12 = 2. But the image of H is the parallel strip {wIO < 1mw < which is
not a Jordan domain. Consequently, f does not even possess a homeomor-
phic extension to the plane. 0

Here we obtained Theorem 5.1 as a corollary of the general Theorem 4.1,
but actually Theorem 5.1, proved by Ahlfors and Weill [1] in 1962, was
discovered before Theorem 4.1. Thanks to the simple reflections z —, 1/2 for
the unit disc and z —' I for the half-plane, the proof of Theorem 5.1 is consi-
derably shorter than that of Theorem 4.1. We can bypass the considerations
which guarantee the existence of the special reflection needed in the case of
an arbitrary quasidisc.

Theorem 5.1 gives the result we mentioned in 2.1:

Let A be a simply connected domain with more than one boundary point. if
the distance ô(A) from a disc is <2, then A is a quasidisc.

Let us return to (5.2) and set = — We then have in the lower
half-plane

where is a function and the Poincaré density.
Supplementing Theorem 4.1, Bers proved that the same result holds even

in the general case: A functionf which is meromorphic in a quasidisc A and has
a sufficiently small uS1 is univalent and has a quasiconformal extension with a
complex dilatation where qi is a holomorphic function and Poincaré
density in the complement of the closure of

The complex dilatations turn out to be important in Chapter V when
we consider quasiconformal mappings which are lifts to the universal cover-
ing surface of quasiconformal mappings between Riemann surfaces. In our
applications we shall get along with the case of the half-plane and content
ourselves therefore to indicating only briefly how the reasoning goes in the
general case. For the complete proof we refer to Bers [7] or [9].

Let M be the set of complex dilatations which are zero in A and of the form
outside the closure of A, and Q the space of holomorphic functions of A

with a finite hyperbolic sup-norm. If f is a quasiconformal mapping with
complex dilatation p in M, then S1 is uniquely determined by p. By methods
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of functional analysis, Ben proves that the mapping z -, SM of M into Q is
invertible in a neighborhood of the origin of Q. The proof makes use of the
representation formula for of the reproducing property• of the Bergman
kernel function and, just as in Theorem 4.1, of a Lipschitz-continuous quasi-
conformal reflection.

5.2. Real Analytic Solutions of the Boundary Value Problem

Interrupting briefly the study of functions meromorphic in a disc, we show
how Theorem 5.1 can be utilized for constructing real analytic solutions of
the boundary value probkm discussed in 1.5.

Let a k-quasisymmetric function h be given (cf. 1.5.2). We assume first that
k <,/i Let be a quasiconformal self-mapping of the upper half-plane H
with boundary values I.. We construct by using the Beurling—Ahifors
method so that the maximal dilatation of £ does not exceed k2 1.5.3).

Bee use k2 <.2, the complex dilatation p of Ii satisfies the condition

$isL < 1/3. (5.3)

By ThcoiemI.4.4, there exists a quasiconformal mapping f of the plane
which has the complex dilatation p in H and which is conformal in the lower
half.plane H'. By Theorem 3.2 and formula (5.3),

� <2.

Thus we can apply Theorem 5.1 and obtain a new quasiconformal extension
f for flU'. Then of is a quasiconformal seif-niapping of H
with boundary values h. From the expression

—

zEH', we see that f is real analytic. By the Uniqueness theorem 1.4.2, the
mapping is conformal. Hence f* is real analytic.

In the case of an arbitrary quasisymmetric function h we write h =
hR o' • 1,2 where each h1 is k-quasisymmetric for k Using formula
(417) in L4.7 we remark that this is possible, because the boundary function
of a K-quuiconformal self-mapping of H fixing is A(K)-quasisymmetric
and .%(K) -. 1 as K -+ I. If f1 is a real analytic solution corresponding to
then f7 o • o is a real analytic solution for h. We have thus given a proof
for Theorem 1.5.3.

5.3. Criterion for Univalence

Theorem 1.3 says that if f is univalent in a disc, then IIS,fl � 6. By use of
Theorem 5.1, we obtain a converse to this theorem.
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Theorem 5.2. Letf be meromorphic in a disc. If

IIS,II�2,
then f is The bound 2 Is best possible.

PROOF. Consider functions n = 1, 2 ..., which are meromorphic in the
given disc, fix three points of the disc, and have Schwarzians (1 — by
Theorem 1.1 such functions exist Since II <2, every is univalent owing
to-Theorem 5.1. They form a normal family, and the limit of a locally
uniformly convergent subsequence is a univalent function. Since the limit
function shares the same Schwarzian derivative with f, we conclude that f is
univalent.

In order to prove that the bound 2 cannot be replaced by a larger number,
consider the analytic function z —' f(z) = z1', s >0, in The upper hall-plane..
Then Sf(z) = (1 + e2)(2z2)', and so II S1 If = 2(1 + 82). On the other hand, I
is not univalent for any e> 0 For instance, f takes the same value at the
points i and I exp(2ir/s) of the upper half-plane. 0

Here we derived Theorem 5.2 as an easy corollary of Theorem 5.1. How-
ever, as might be expected, quasiconformal mappings are not needed for the
proof of Theorem 5.2, which is in fact a'much older result than Theorem 5.1.
It was proved in 1949 by Nehari [1], and in the same year Hue showed that
the bound 2 is sharp.

5.4. Parallel Strips

We shall now show that the condition If S1f1 � 2 nà disc allows for conclu-
sions about the function f beyond its univalenoc. results in tho remaining
part of this section are due to Gebring and [1].

Let f be a meromorphic function in a disc D, h a confonnal mapping of a
domain A onto D, and g fo h. Since fJ II S9 — Skfl .4, we can transfer
Theorem 5.2 to A. If we can construct h modified theorem can
be of interest. In particular, if A is a parallel strip, certain tethnical advan-
tages are gamed which will be utilized in the following.

Let us normalize the domains and assume that D is the unit disc and
A = (zI$ImzI <it/2}. Then

z —' h(z) = tanh(z/2)

is a conformal map of A onto D. It maps the real axis R onto the real
diameter of D, and it has the Schwarzian Sh(z) = —1/2. The Poincaré density
of A at z = x + iy has the value (2 cos

We list two immediate consequences. First, Theorem 5.2 assumes the fol-
lowing form: Let g be meromorphic in A = {zII!mzl <n/2}. If
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+
2cos2y'

then g is univalent in A. The bound is best possible.
Second, if x is a point of the real axis and w = h(x), then by the basic

invariance formula (1.9) in 1.3,

41S9(x) + = (1 — 1w12)21S1(w)I. (5.4)

This equation remains valid if h is replaced by an arbitrary conformal map-'
ping of A onto D. The image of the real axis is always a geodesic line in the
Poincaré metric of the unit disc, i.e., it is a circular arc which intersects the
unit circle orthogonally.

If f has no poles in D, then g is holomorphic in A. Direct computation
shows that on the real axis R, the function x —. v(x) = then satisfies
the differential equation

v" (5.5)

with

4, = — Re S9
+

Im
v-).

(5.6)

We remark that equation (5.5) with determined by (5.6) is an identity which
holds on R for every g holomorphic in A. Note that by (5.4), condition.
ItS1 � 2 implies Re S1(x) � 0 and hence 4)(x) � 0.

5.5. Continuous Extension

We shall prove that if flS, lID � 2, then f always has a continuous extension
to the boundary of D. Using (5.5) and (5.6), we first establish as a preparatory
result an estimate on If'I when f satisfies certain additional conditions.

Lemma 5.1. Let f be a function meromorphic in the unit disc D satisfying
f"(O) = 0, IIS1 'ID � 2, and (1 — IwI2)21S1(w)I � I in a neighborhood Iwl � a < 1
of the origin. Then I is holomorphic in D and

/ I +
tf'(w)I � i — 1 — Iwl)

(5.7)

where M is a constant depending only on a.

PRooF. By symmetry, it is sufficient to consider the case w > 0. Assume first
that f is holomorphic in D.

We make use of the conformal mapping h: A D defined in 5.4, the com-
position g = foh, and the function x v(x) = Because =0,
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we conclude from the assumption f"(O) =0 that g"(O) = 0. Hence

v'(O) = =0.

The hypothesis flS1 fl1) � 2 implies, as we mention&1 at the end of 5.4, that
q(x) � 0 on R. By (5.5) we then have v"(x) � 0, so that v' is increasing in x.
From v'(O) =0 it follows that v'(x) � 0 for x � 0. Consequently, v(x) �
and by (5.5), v"(x) �

From (1 — 1w12)21S,(w)t � 1 in Iwl � a we infer, in view of(5.4) and the
relation z = h1(w) = log((1 + w)/(1 — w)), that ReS,(x) � — 1/4 if 0 � x �
b = Iog((l + a)/(1 — a)). Hence, by (5.6), p(x) � 1/8, and so v"(x) � v(O)/8
for 0 x b. This yields v'(x) � xv(0)/8 for 0 � x � b. We conclude that

v(x) v(O)(l + b(x — b)/8)

for x � b. If c = min(l/b, b/8), it follows that v(x) � cv(O)x, i.e.,

-

for x � 0. Because = 21h'(x)f'(w)I = (1 — 1w12)1f1(w)I, 2g'(O) = f'(O),
and x = Iog((l + w)/(1 — w)), this is (5.7) with M =

Now drop the assumption that f is holomorphic in P and set r = inf
{IwoI w0 a pole of 1). Repetition of the above reasoning shows that (5.7)
then holds in Iwl <r. We see that if r < 1 and IwoI = r, then f'(w)l remains
bounded as w —' w0. This is a contradiction, and so f has no poles in D. 0

Inequality (5.7) yfelds the following preliminary result: A function f
ing the conditions of Lemma 5.1 has a continuous extension to the boundary
of D. This follows from the fact that

+r)_2

is integrable over the interval [a, 1]. Hence, we see from

— f(r1e'°)I � u/s(r)dr, r2 > r1,
J 'I

that the limit of f(re') as r -+ 1 exists uniformly in 0. It defines, therefore, a
continuous extension of f.

5.6. Image of Discs

We can now prove the main theorem about the image of a disc under a
conformal mapping f for which IS, II.� 2. The result (Gehring and Pomme-
renke [1]) complements Theorem 5.2.
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ThMrsm 5.3. Let fbe meronsorphic in a disc D and 115,11 �2. Thenf(D)
is either a Jordan domain or the image of a parallel strip under a Möbius
transformation.

We may assaw.e that D is the unit disc. We first hote that

m = inf (1 — (w12)21S,(w)I = 0. (5.8)
WED

For if in the ñiaction i/Sf is holomorphic in D. From

1 (1 —

m

and maximum pri*ciplc we then arrive at the impossible conclusion that
1/S1 varnshes i4entically in D.

F,om (51) condude the existence of a point w0 D at which

IS,0V0)( <(1 — IwoI2)_2.

We may that f(w0) = 0. If g1(w) = (w + w0)/(1 + and 11 =
�2and

IS,,(O)I = fS,(w0)I(1 — jw012)2 < 1.

Thus there is an a >0 such that

< (1 — 1w12)_2

for <a. Next set c fID1(0)/2f(O)2, g2(w) w/(cw + 1), and 12 = g2 oft.
Then and = 0, so that 12 fulfills all conditions of Lem-
ma 5.1. It follows that 12 has a continuous extension to and hence
f of2ogr1 also has this property.

If the extended f is injective in the closure of D, then it is a homeomor-
phism of the closure of D onto its image. In this case f(D) is a Jordan domain.

Suppose then that the extended! is not injective. Let f take the same value
at the points w1 and w2 in the closure of D. Since the condition S,ll � 2

implies that f is injective in D, it follows that w1 and w2 lie on 3D. Let y be
the noneudidean line of D with endpoints w1 and w2, and w0 a fixed interior
point of y. We assume first that the value the extended I takes at w1 and w2
is Then the images of the components of y\{w0} under I both have
infinite length.

Let h now be a conformal mapping of the parallel strip A onto D which
maps the real axis onto y, and g = fo h. Then the g-images of the components
of R\{x0}, x0 = h'(w0), are the same as thef-images of y\(w0). Hence,

1
=

Jx0

On the other hand, we get upper estimates for these integrals by studying
the function v = As before, we deduce from (5.5) that v' is increasing
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in x. If v'(x0)> 0, it follows that v(x) � v(x0) + v'(x0)(x — x0) for x � x0.
Hence,

I

Jxo v(x0)v (x0)

Similarly, if v'(x0) <0,

f Ig'(x)I dx �
In conjunction with (5.9) these estimates show that v'(x0) = 0, i.e., that v'
vanishes on the real axis. It follows that Re(g"/g') = 2v'/v 0 on By
(5.6) and (5.5),

� p = 0.

We conclude that g" vanishes on R and hence in A. Thus g is a similarity
transformation, and f(D) = g(A) is a parallel strip.

If the extended f takes a finite value c at w1 and w2, we can apply the above
reasoning to the function f1 = 1/(f — c). We infer that f1(D) is a parallel strip,
and the proof of the theorem is completed. 0

5.7. Homeomorphic Extension

The following result (Gehring—Pommercnke [I]), an easy consequence of
Theorem 5.3, fits in the narrow gap between Theorems 5.1 and 5.2.

Theorem 5.4. Let f be meromorphic and satisfy

2
IS,(z)I < (1 — )z12)2

In the unit disc. Thenf is univalent and has a homeomorphic extension to the

P100F. By Theorem 5.2, f is The image f(D) is a Jordan domain if
and only 1ff has a homeomorphic extension to the plane. Hence, if a homeo.
morphic extension does not exist, then by Theorem 5.3, f(D) is the image of
the parallel strip A under a Möbius transformation. If h again denotes the

• conformal tanh(z/2) of A onto D, then g = fóh.is a Möbius
It follows from (5.4) that

(1 — lz(2)21S,(z)I 2

at every point of Is(R). This is in with the hypothesis. 0
we obtain the followia pad.. classification for functions f

in the emit dlac CondIdoè"
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(1 — z(2)21S1(z)l � 2

implies that f is univalent, condition

(1 — <2
that f is univalent and has a homeomorphic extension to the plane, and
condition

sup(1 — )zV)2 jS1(z)J < 2

that f is univalent has a quasiconformal extension to the plane.



CHAPTER HI

Universal Teichmüller Space

Introduction to Chapter III
The notion of universal Teichmüller space was crystallized in connection
with the problem of imbedding the Teichmülleç space of a Riemana surface
into a space of Schwarzian derivatives. In the general case, the Schwarzians
in question are holomorphic quadratic differentials for a group of Möbius'
transformations (see V.4). The universal Teichmüller space corresponds to
the situation in which the group is trivial. The Schwarzians are then just
holomorphic functions, and the machinery developed in Chapter II can be
applied directly. It follows that Chapter III, devoted to the study of the
universal Teichmüller space, provides a bridge between univalent functions
and Teichmüller spaces.

The other end of the bridge will not be visible until Teichmüller spaces of
Riemann surfaces are introduced in Chapter V. The drawback is that in
section 1 of this chapter we are unable to motivate the definition of the
universal Teichmüller space. In fact, plenty of explanation is required before
the role of the universal space in Teichmüller theory becomes clear; a reader
who wishes to get an early idea of this role may want to consult V.3.

In section 1, various models of the universal Teichmi'ller space T are in-
troduced, and the group structure of T is discussed.

Following Teichmüller's classical example, we define in section 2 a distance
function which makes T a metric space. This space is shown to be pathwise
connected and

In section 3, we study the model of T provided by the family of normalized
quasisymmetric functions. This characterization offers certain technical ad-
vantages. Using it, we prove that T is contractible and that T is not a topo-
logical group.
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Section 4 deals with the problem of mapping T into the Banach space of
Schwarzian derivatives with finite norm. By appealing to the results of Chap-
ter 11, we prove that the mapping is a homeomorphism of T onto its image
and that the image agrees with the interior of the set consisting of the
Schwarzians of univalent functions. The mapping could also be used to intro-
duce a natural complex analytic structure into the universal Teichmiiller
space, but we shall not take up this question until V.5, in connection with an
arbitrary Teichmüller space.

In section 5 we introduce the inner radius of univalence of a simply con-
nected domain. Its use makes it possible to analyze further the image of the
universal Teichmüller space in the space of Schwarzian derivatives.

1. Models of the Universal Teichmüller Space

1.1. Equivalent Quasiconformal Mappings

Let us consider the family of all quasiconformal mappings of a fixed domain
in the plane. In this section we assume that this domain is the upper half-
plane H. We wish to introduce additional structure to this family and begin
by regarding two mappings as equivalent if they differ by a conformal map-
ping. In view of the Riemann mapping theorem, we may then restrict our-
selves to self-mappings of H and require that they are normalized so as to
keep fixed the three boundary points 0, 1 and We denote by F the family
of such normalized mappings. (Recall: every element' of F can be extended to
a homeomorphic self-mapping of the closure of H. It is actually the extended
mappings to which the normalization requirements apply.)

By the existence and uniqueness theorems for Beltrami'equations (Theo-
rems 1.4.4 and 1.4.2), there is a one—one correspondence between F and the
open unit ball B of the Banach space which consists of all on H.

A more interesting space is obtained if we introduce a weaker equivalence
relation.

Defánition. Two mappings of the family F are equivalent if they agree on the
real axis. The complex dilatations of equivalent mappings are also said to be
equivalent. The set of the equivalence classes is the universal Teichmüller
space

We thus have two models for T: Its points are classes of equivalent map-
pings i'i the family F or of equivalent functions on the ball B.

A third model is obtained in terms of quasisymmetric functions. We recall
that a quasisymmetric function is said to be normalized itit fixes the points 0
and 1. Let X denote the class of all normalized quasisymmetric functions. If
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[fJ is the point of T represented by the mapping fe F, then

(1.1)

is a bijective mapping of T onto X. For it is clear from the definition of T that
(1.1) is well defined and injective. By Theorem 1.5.1, it maps T into X, and by
Theorem 1.5.2, it is surjective. It follows that we can rephrase thedefinition of
the universal Teichinüller space:T is the set ofall normalized quasisymmetric

functions.
This observation allows an important conclusion:

Theorem 1.1. Every point of the universal Teichmüller space can be represented
by a real analytic quasiconformal mapping f EF or by a real analytic complex
dilatation p e B.

PROOF. The result follows immediately from Theorem 1.5.3. (For a complete
proof, see 11.5.2.) 0

We shall see in V.3.2 that the universal Teichniüller space contains as a
subset the Teichmüller space of any Riemann surface which allows a half-
plane as its universal covering surface. It was Bers [7,8] who recognized the
importance of this largest and, in many way's, simplest Teichmüller space and
gave it the name universal.

J.2.

1ff belongs to F, then so does its inverse f'; along with f and g in F, the
compositionfog is also in F. The family F can thus be regarded as a group.
From the definition of the universal Teichmüller space it follows that T
inherits this group structure: T is the quotient of the group F ofall normalized
quasiconformal self-mappings of the upper half-plane by the normal subgroup of
mappings equivalent to the identity.

1ff g e F, the rule

(f]o[g]= [fog] (1.2)

defmes the group operation in T The neutral element, i.e., the point of T
determined by the identity mapping (or by the complex dilatation which is
identically zero) is called the origin of T and denoted by 0.

Normalized quasisymmetric functions also form a group under composi-
tion. This follows from Theorems 1.5.1 and 1.5.2 or from an easy elementary
computation. We see that the mapping (1.1) is an isomorphism between the
groups T and X.

Let us consider, a moment, quasiconformal self-mappings of II which
are not necessarily normalized. If 11 and 12 are two such mappings, we still
say that is to f21f is the identity. Let JEF be a
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normalized and g an arbitrary quasiconformal self-mapping of H. We choose
a Möbius transformation h, mapping H onto itself, such that eF,
and defme w = w151: T —, T by the formula

co([f]) =

Then w, which depends only on the equivalence class [g], is a well
defined bijection of T onto itself. Further, [g] = 0 implies that w is the
identity and

= [h1 co[g,]01921([f]).

We conclude that when g runs through all quasiconformal self-mappings of
H, the transformations T —, T form a group. It is called the universal
modular group M.

We now return to normalized quasiconformal self-mappings of H and
consider the subgroup M, of the universal modular group consisting of trans-
formations with g e F. Then

=

i.e., elements of are right translations of the group T
In 2.1 we shall introduce a metric into T and prove that every is an

isometry with respect to this metric.
The group M, of right translations is transitive: If [fr] and P2 = [f2]

are given points of there is an E such that P2 = This is
clearly the case if g = of1..

1.3. Normalized Conformal Mappings

The mappings belonging to F can be continued quasiconformally to the
plane by reflection in the real axis. However, such an extension does not give
new insight into the properties of T It was a fundamentai observation of Bers
[4] that one should extend, not the mappings of F but rather their complex
dilatations, in such a way that the corresponding extended mappings are
conformal in the lower half-plane. The machinery developed in Chapter II
can then be applied to the study of T

Let B and f'4 be the mapping of F withcomplex dilatation i. We extend
,u to the lower half-plane H' by giving it' there the value 0. Let be the
quasiconforinal mapping of the plane which 5*ce 0,1, co and whose complex
dilatation agrees with the extended Then is conformal.

Theorem 1.2. The complex dilatations and v are equivalent and only
the conformal mappings f,LI H' and H' coincide.

PROOF. Suppose first that H' f,IH'. The mappings j a and
are both conformal in the upper half-plane H, which they map
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onto the same quasidisc. Because they fix 0, 1, oo,it follows that they agree in
H, and hence also on the real axis R. Since f,, = f, on R, we condude that

= on R, i.e., p and v are equivalent.
Assume, conversely, that f" =1' on R. We define a mapping w of

the plane by the requirements w = in f,(H' '.i R), and w =
f,, o of' of,1 in f,(H). From the hypothesis f' on R it follows
that w is a homeomorphisin of the plane. In addition, is conformaL
But so is also wjf,(H), because f,,o(fT' and f'of,1 arc conformal. Since
f,(R) is a quasicircie, we infer from Lemma 1.6.1 that w is a Möbius trans-
formation. Owing to the normalization, w is the identity mapping and so

0

Let F* be the family of all quasiconformal mappings of the plane which fix
the points 0,1, and arc conformal in the lower half-plane. Two mappings
f,, and f, of F* are said to be equivalent if they agree in the lower half-plane.

Theorem 1.1 says that every equivalence class [f"] contains real analytic
mappings. It follows that each class [1,3 has representatives which arc real
analytic in the upper half-plane H. For in H,

where f,1o(fT' is conformal. Therefore, f,,IH is real analytic is.

In particular, there arc mappings f,, which are conformal in H' and real
analytic in H but which, nonetheless, are very irregular on the real axis R.
We recall that the Hausdorif dimension of the image cur e ban be arbi-
trarily close to 2 (cf. 1.6.1).

By Theorem 1.2 the space T can be regarded as the set of the equivalence
classes [1,3. Or more explicitly: The universal Teichmüller space is the set of
the normalized conformal mappings

1.4. Sewing Problem

The characterization of T by means of the conformal mappings leads
to far-reaching conclusions. Section 4, in particular, will be devoted to consi-
derations emanating from this model of

Anticipating a need in section 1.5, we give a solution to the following
sewing problem: Let h be a strictly increasing continuous function on the
real axis, growing from — to + cc. Find conformal mappings 11 and f2 of
the upper and lower half-plane, respectively, onto complementary Jordan
domains such that

fr1ofz=h
on the real axis. We call the pair normalized if and 12 both fix 0, 1
and cc.

Depending on h, the sewing problem, to which many questions in complex
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analysis seem to lead, need not have any solution or it may have infinitely
many pairs of solutions. However, if h is a normalized quasisymmetric func-
tion, the existence of a unique nonnalized solution can be easily established
by aid of the quasiconformal mappings f and It is in this form that the
result will be used for studying the universal Teichmülier space.

Lemma 1.1. Let h be a normalized quasisymmétric function. Then the sewing
problem has a unique normalized pair of solutions.

PROOF. Given a function he X, there is a mapping f' e F such that f"I ft = h.
Then

is a solution of the sewing problem. This can be verified immediately.
Suppose that the pair is also a normalized solution. Then g2IR
oh ofUIR. Hence, the mapping w which agrees with of's in H u ft

and with g2 in H' is a homeomorphism of the plane. OfT the real axis it is
quasiconformal. By Lemma 1.6.1, w is quasiconformal everywhere. Since w
has the same complex dilatation as and both mappings fix 0, 1 and CX), it
follows from the uniqueness theorem (Theorem 1.4.2) that w = Compari-
son of the definitions of w, and 12 then shows that g1 = f1, g2 = 12. 0

Note that 11 and f2 map the onto quasidiscs. Lemma 1.1 is due
to Pfluger [21; in [LV], p. 92, it was proved without the use of the existence
theorem for Beltrami equations.

1.5. Normalized Quasidiscs

We shall now express in geometric terms the fact that points of the universal
TeichmUller space can be represented by the conformal mappings We
call a quasidisc normalized if its boundary passes through the points 0, 1,
and is so oriented that the direction from 0 to 1 to IX to 0 is negative with
respect to the domain. Let A denote the class of all normalized quasidiscs.

1ff E Fe, then

[f]—*f(H') (1.3)

is a bijective mapping of Tonto We first conclude from Theorem 1.2 that
(1.3) is well defined. If f(H') = g(H'), then of is a conformal self-mapping
of H' fixing 0, 1, Hence fIH' gIH', i.e., [f) = [g], and it follows that
(1.3) is Finally, by Lemma 1.6.2, every quasidisc is the image of H'
under a quasiconformal mapping of the plane which is conformal in H'. Since
the required normalization is achieved by use of a suitable Möbius transfor-
mation, we conclude that (1.3) is suijective.
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The bijection (1.3) provides one more model for the universal Teichmüfler
space: Tis the collection of all normalized quasidiscs.

Using Lemma LI we obtain a connection between nonnalized quasidiscs
and the group structure of T(Gardiner [1]).

Theorem 13. Tho points [f"], [f"] Tare inverse elements of the group Tjf
and only the and f,(II') are mirror images with respect to the
real axis.

PROOF. Assume first that and [fVJ are inverse; we can then take
= (f'Y'. Let be the quasiconformal mapping of the plane which fixes

the points 0, 1, and whose complex dilatation vanishes in H and
equals at almost all points zeH'. We write 9i = and denote by g2
the unique mapping of H' onto f,4.(H') which keeps 0, 1,cç fixed.
Then 9i and 92 are normalized conformal mappings of the upper and lower
half-planes, respectively, onto complementary quasidiscs.

In order to study og2 on the real axis R, we continue fP by reflection
in and use the same notation f" for the extended mapping. Then

in H', because both sides are normalized quasiconformal self-mappings of H'
with the same complex dilatation. Hence, on R

og2 = (fMYl = 7.
Now set

f1 = Ii =

Then and f2 are also normalized conformal mappings of the upper
and lower half-planes onto complementary quasidiscs. On the real axis,

of2 = 7 = og2. We conclude from Lemma 1.1 that g1 = g2 = 12.
From the definition of it follows that = one way to verilS'

this is to compute thr derivatives. Since f,(H) = f1(H) = g1(H) =
we obtain

f,(H') = =

and the first part of the theorem has been proved.
After this the converse is easily established. Suppose that f,6(H) f,(H').

By what was just proved, there is a quasiconformal mapping where is
determined by fA = (fm', such that = fA(H'). Since the mapping (1.3)
is injective, we conclude that A is equivalent to v. It follows that ff") and
[7) are inverse elements of 0

In 11.2.1 we defined the distance ö(f(H')) = i),,. between the domains
f(h") and H'. This notion was generalized in 11.2.7 to apply to two arbitrary
domains cotiformally equivalent to discs. When the domains are normalized
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quasidiscs, we can give a new definition: if J, g J. then
tween f(H') arid g(H') is defined by

q(f(H'), q(H')) = -— 'I

It is easy to cheek that q, so defined, is a metric on By use of the
bijection (1.3), the metric can be transferred to T This q-metric will be
in detail in section 4. Before that in section 2, a different metric will be defined
for Tin a more direct manner.

2. Metric of the Universal Teichmüiler Space

2.!. Definition of the Teichmüller Distance

In addition to the group structure, the universal Teichmüller space has a
natural metric. We obtain this metric by measuring the distance between
quasiconformal mappings in terms of their maximal dilatanons. When repre-
senting points of T mappings fit does not matter whether we assume that
fe F (normalized se of H) or that J e P (normalized mapping of
the plane. confotmal in H'). This follows from the fact that and f,, have the
same maximal dilatation.

The distance between the points p and q of T defined by

r(p,q)=

where K denotes the maximal dilatation and or f is

called the Teichmüller distwice between p and q. Teichmüller [1] used this
idea for defining distance in his studies on compact Riemann surfaces

V.2.2).
Before proving that the Teichmüller distance makes T into a metric space.

we show that r admits various other formulations. In order to fix the ideas.
we assume for a moment U at the mappings representing
points of T are in the class F*.

Fix a representative p and set

(p,q) = Kqoj6tlgeq}. (2.2)

Alternatively, we can fix both e p and 9o eq. consider the class W of all
quasiconformal mappings of the plane which agree in f0(H') with
and set

r2(p,q) = W}. (2.3)

Lemma 2.1. The functions r, and r2 are the same.

PROOF. Clearly, z � If we W, then g = wof0eq, so that r1 � r2. Finally,
- 0
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By our previous remark, Lemma 2.1 holds also if the points of T arc
represented by mappings from F. The class W must of course be modified,
being now the family of all self-mappings of H which agree
on R with g0 If we set h = g0 we thus reencounter the family we
considered 1.5.7, there under the name F,,. We proved that F,, contains an
extremal mapping which has the smallest maximal dilatation in F,,. If this is
denoted by K,,, then by Lemma 2.1,

. (2.4).

One important consequence of the existence of an extremal mapping in F,,
is that in expressions (2.1), (2.2), and (2.3), we can replace iilf by mm. After this
observation, it is readily seen that (2.1) (or (2.2), (2.3), or (2.4)) defines a metric
in T. Clearly v is non-negative and symmetric, and r(p,p) =0. Suppose that
r(p, q) = 0. Then it follows from (2.4) that F,, contains a conformal mapping
and because of the normalization, this mapping is the identity. Hence f0IR =

which implies p = q. The triangle inequality follows from the property
K,01 � K,K, of the maximal dilatation.

Th6 Teichmüller distance is invariant under the universal modular group. For
the subgroup M,, the trivial obseivation

9of1 =

yields immediately the invariance

r([f], [j]) = r([fof0 1], [go

In particular,
r([f],[gJ) =

so that all distances can be measured from the origin. The general result
(which we shall not make use of) follows from the fact that conformal map-
pings do not change maximal dilatation.

2.2. TeichmUller Distance and Complex Dilatation

If f and g have the complex dilatations and v, the norm of the complex
dilatation of g of -' is equal to — v)/(1 — giv) Q Therefore, in terms of
complex dilatations, the Teichmilller distance assumes the form

— 1

.
1 + IRii — v)/(1 —.

— —mink og
1 — IIOz — v)/(1 —

lI4ep,veq

The right-hand expression displays a striking similarity to the hyperbolic
distance h in the unit disc D given by formula (1.1) in 1.1.!. We introduce the
number

II v) fl = ess sup h(js(z), v(z))
ZGH

and call it the hyperbolic distance between the complex dilatations p and v.
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From (1.1) in 1.1.1 we then obtain the characterization

r(p,q) =

of the Teichmüller distance as the minimal hyperbolic distance.
Consider the bounded function

8(p,q)=inf[ LV pep,veq
I.

From fi = tanh r we see that in the definition of fi, inf can be replaced by mm,
that (I also makes T into a metric space, that is invariant under the universal
modular group and that the metrics defined by r and are topologically
equivalent. In other w.irds, in studying topological properties of Twe may
use the metric provided by instead of the TeichmUller metric. Let us give a
simple application.

Theorem 2.1. The universal TeichmuUer space is pat hwise connected.

PROOF. Consider the origin of T, i.e., the point represented by the function of
B which is identically zero, and an arbitrary point p e 1' represented by For
0 � t � 1, let p, be the point represented by the function tp of B. Then

� �
We see that the mapping t p, is continuous, i.e., it is a path in T joining
the origin to p. 0

In 3.3 we shall prove that the universal Teichmüller space is not only
pathwise connected but even contractible. This means that T can be de-
formed continuously to a point. The result is less trivial than it would seem
at first glance, because for equivalent and v, the complex dilatations tj,t and
tv need not be equivalent for 0 < t < I (Gehring [1]).

2.3. Geodesics for the Teichmüller Metric

The length of an arc y: [0, 1] —* (7', r) is the supremum of y(t1)) for
all subdivisions 0 = t0 <t1 = 1 of the unit interval. An arc y is a
geodesic if the length of every subarc of y is equal to the distance between
the endpoints of

Geodesics of T can be described explicitly with the help of extremal com-
plex dilatations. We say that jz e p is extremal if If f( = mm { fi v (V e p}.

Theorem 2.2. is an extremal complex dilat ation for the point p e T, then

' 0 1 25(.
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is extremal for the p1 (j.t,j. The arc t is a geodesic from 0 to p, and

(2.6)

PROOF. From (2.5) we see that p,(r) is the point which divk!cs the hyperbolic
length (in the unit disc) of the line from 0 to in the ratio t: (1 — t)
(cf. formula (4.16) in 1.4.7).

If has maximal dilatation K, then by Theorem 1.4.7, the mapping
has maximal dilatation Kt and o has maximal dilatation K1 '.
Suppose that wept. Then q' = owEp, and so K c K, �
Consequently, K,, � K'. We conclude that ji, is extremal for the point
This reasoning also shows that 0) 4Iog K' = 0), i.e., the validity
of (2.6).

has maximal dilatation K'', we conclude that z(p,,p)
(1 — t)t(p,0). r(O,p,) + = for every t. Finally, if
we repeat the arguiiient for an arbitrary subarc of t — see that
t—'p,isageodesic. If .0

Since the extremal i need not be unique (cf. 1.5.7). we cannot conclude that
the geodesic e —' ft,] is unique.

2.4. of the Universal TeichmUller Space

We shall now prove that the space (T, is complete. We first describe ex-
plicitly the construction on which our proof of the completeness is based and
list the pertinent facts associated with that construction.

Lemma 2.2. Every Cauchy sequence in (T, i) contains a subsequence whose
points are represented by complex dilatations with the following properties;

10 urn exists almost everywhere;
20 [fr] in the Teichmüller metric;
3° —+ uniformly in the spherical metric;
40 .f."(z) —+ locally uniformly in the upper half-plane.

PROOF. In order to simplify the notation, we renumber functions each time
pass from a sequence to its subsequence. write =

Let be a Cauchy sequence in (T, t). We shall construct inductively, a
with properties 0_40 using suitably chosen mappings

First, fix a mapping f1 so that

inf log

where for each p. the infimum is taken over all mappings of [J4,,]. Since
is a Cauchy sequence, such a mapping f1 exists, as can be seen from

formula (2.2) and Lemma 2.1. We renumber the sequence by setting f1 = f1.
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After this, we choose for every n > 1 the mapping f0 from its equivalence
class so that

log K10011,

From this new sequence (fe) we choose a mapping so that

where again for each p the infimum is taken over all mappings of the class
We set = f2, and for n> 2, choose a representative of [fe] so that

logK1012,

Continuing this procedure we obtain a sequence (f0), such that ([fe]) is a
subsequence of the given Cauchy sequence and such that, for any two con-
secutive indexes, the maximal dilatations satisfy the inequality

log of,;' <Z2", ii = 1, 2

It follows that

log K1, of' 2-(Jl+J—1) (2.7)

for n, p = 1, 2

Considering the connection between the maximal dilatation and the norm
of the complex dilatation, we deduce from (2.7) that the complex dilatations
ic,, off0 satisfy the inequality

Pn+p —
— � L Lanfl

I —

Thus (p,,) is a Cauchy sequence in Since is complete, the limit
p = urn p,, exists in Thus the validity of condition 1° follows. From (2.7)
we conclude that the mappings f0 (and hence also are K-quasiconformal
for a fixed K. It follows that < 1. Therefore, [p] = limfp0 (T, fi) and
hence also in (T, t). This means that the statement is true. Since the
mappings f,, and keep the three points 0, 1, oc fixed, the families { f0) and
{ f"} are'normal, by Theorem 1.2.1. Hence 3° and 4° follow, after possible
passage to further subsequences. D

Theorem 2.3. The universal Tei'chmüller space is complete.

PRooF. In view of statement 2° in Lemma 2.2, it is enough to observe that if
a Cauchy sequence contains a convergent subsequence, then the sequence
itself is convergent. El

Having proved Theorem 2.3 we see that in Lemma 2.2, we need not pick a
subsequence: If p0 —. p in (T, r), there are complex dilatations e p0, pep, such
that the conditions 1°, 3°, and 4° of Lemma 2.2 hold (cf. Theorem 1.4.6).
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In view of the simple relation between the distances t and fi, it is easy to
show that the metric space (T, is also complete. In contrast, using Schwar-
zian derivatives we shall obtain in section 4 one more model for T which is a
metric space homeomorphic to (T, r), but is not complete. (It is, in fact, the
metric space (A,q) discussed at the end of 1.5.)

3. Space of Quasisymmetric Functions

3.1. Distance between Quasisymmetric Functions

Let us consider again the space X of normalized quasisymmetric functions
discussed in 1.1. For heX we defined in 1.5.1 the maximal dilatation
Imitating the method we used in defining the Teichmüller distance, we set

p(h1,h2) =

for h1, h2 cX. It is easy to verify that p defines a metric on X.

Theorem 3.1. The group isomorphism

[f]-'fIR (3.1)

is a homeomorphism of(7', v) onto (X, p).

PROOF. We proved in 1.1 that (3.1) is a bijection of T onto X. From (2.4) and
the left-hand inequality (5.10) in 1.5.7 it follows that

I
R,f2

I R) � 1 [121). (3.2)

Hence (3.1) is continuous. From Lemma 1.5.5 (or from the right-hand inequa-
lity (5.10) in 1.5.7) we conclude that the inverse of(3.1) is continuous. D

From the double inequality (5.10) in 1.5.7 we can draw another conclusion:
The space (X, p) is complete. For we conclude from the right-hand inequality
(5.10) that the preimage of a Cauchy sequence in (X,p) is a Cauchy sequence
in (T, r). The inequality (3.2) then shows that (3.1) maps a convergent sequen-
ce of (T, r) onto a convergent sequence of (X, p).

Suppose that h, hNEX, n = 1,2,..., and that = 0. Then h

locally uniformly in the euclidean metric. For by Lemma 1.5.1, is a
family. If is the limit of a convergent subsequence of (he), we

have Kt01,-, � lim = 1. Hence = h. Since every convergent sub-
sequence of (ha) has limit Ii, the sequence itself tends to h.

The converse is not true. A counterexample is obtained if we set = x
for x � n, and h(x) = 2x — n for x > n. Then X and urn h(x) = x,
uniformly on every bounded interval. But the quasisymmetry constant of
is 2, so that by the remark in 1.5.2, urn inf It) > (log ).' (2))/2 > 0.
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3.2. Existence of a Section

Using the space (X, p), we can prove that the universal Teichmiiller space is
contractible, i.e., there exists a continuous mapping of T x {tjO � t � 1} into
T which is the identity mapping for t = 0 and a constant mapping for t = 1.

As a preparation for the proof, we modify the mapping (3.1) by changing
its domain of definition. Let be the space of functions bounded and
measurable in the upper half-plane, and B {p e <1 } its open
unit ball. For pe B, we now consider the mapping i/i of B onto X, defined by

=

In view of the definition of the Teichmuller distance, inequality (3.2) can be
written in the form

(fiR IVIR) + — v)/(l —
p

— 2
g

— H
(p — v)/( 1 — gv)

It follows that .,1i is continuous.
Of course, the mapping B —' X is not invertible. However, there exists a

section s: X —' B, i.e., a continuous mapping of X into B such that os is the
identity mapping of X.

A section s can be constructed with the aid of the Beurhng—Ahlfors exten-
sion of a quasisynunetric function. Given a function he X, we set as in 1.5.3,

f(x+iy)=1 (h(x+ty)+h(x—ty))dt+iI (h(x+ty)—h(x—ty))dt.
Jo Jo

Let be the complex dilatation of f. We shall prove that the mapping
s: X —* B, defined by s(h) = p,is a section.

For X, 1 1, 2, we denote their Beurling—Ahifors extensions by and
set s(h1) = Let K be the maximal dilatation and k the quasisymmetry
constant of h2 o We showed in 1.5.2 that k � ).(K). Hence,

p(h1,h2) = >

Now suppose that h2 h, in (X,p). It follows from the above inequality
that k I. By Lemma 1.5.3, the maximal dilatation of .12 then tends to
1. This is equivalent to P2 converging to Mi, and we have proved that s is
continuous.

Trivially, (i4' os)(h) = h, so that os is the identity mapping of X.
Consequently,s: X -.. B is a section.

3.3. Contractibility of the Universal Teichm tiller Space

After these preparations, the desired result can be easily established (Earle
and Eells [1]).

Theorem 3.2. The universal Teichmüller space is contractible.
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PRooF. Every point of T is an equivalence class [s(h)], h€ X. We show that

([s(h)),t)—*[(1 —t)s(h)J (3.3)

deforms T continuously to the point 0 as t increases from 0 to 1.
In proving this, we make use of Theorem 3.1 which says that

is a homeomorphism of (T, 'r) onto (X, p). It means that instead of (3.3), we
can consider the induced mapping

(h, t) —÷ (3.4)

of X x [0, iJ into X. Clearly, (h,0) —' h and (h, 1) —+ identity. The theorem
follows if we prove that (3.4) is continuous.

The mapping (3.4) is the composition of the three mappings

(h, t) —. (s(h), t), (s(h), t) —÷(1 t)s(h), (1 — t)s(h)

The first one is continuous, because we just proved that h —' s(h) is a con-
tinuous map of X into B. The second maps B x [0, 1) continuously into B,
since — t1)s(h1) — (1 — � — + It1 — Final—

ly, the third mapping is continuous, because we showed that p maps
B continuously into X. Hence, (3.4) is a continuous contraction of X to a
point, and (3.3) has the same property with respect to T D

3.4. Incompatibility of the Group Structure with the Metric

We showed at the end of 3.1 that pointwise convergence of functions of X
does not imply p-convergence. A slightly more complicated counterexample
leads to the conclusion that the topological structure and the group structure
of X are not compatible. We express the result in terms of T.

Theorem 3.3. The universal Teichmüller space is not a topological group.

PROOF, The theorem follows if we find an [f] T and a sequence of points
such that [ga] tends to [g] but [fog,,] does not tend to [fog].

Because the mapping (3.1) is a group isomorphism and a homeomorphism,
the counterexample can be constructed in X. We follow a suggestion of
P. Tukia.

In order to simplify notation we write instead of fj IR. We define f
as follows: f(x) = x if x � 0. f(x) = x/2 if —2 x <0, and f(x) = x + I
if x < —2. Then f is a 2-quasisymmetric function of X. Set i,,(x) = x
if x > 0 and z,,(x) = (1 + 1/n)x if x <0, n = 1, 2 Then is
(I + l/n)-quasisymmetric, and therefore (1 + 1/n)2-quasiconformal (cf. 1.5.3).
If i denotes the identity mapping of onto itself, we thus have

� log(1 + 1/n).

Let us define g,, = Because = we deduce that
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-1, = (3.5)

We prove that f o = f o of -1 (which converges to the identity i point-
wise) does not tend to Jo (urn = un the p-metric.

Direct calculation yields

+ lfn)x if n,'(n 4- � x <0,
= + ljn)x + I if —1 � x < —n/(n + 1).

It follows that has a quasisyrnmetry constant �2 for every n.
Consequently,

�
in conjunction with (3.5). this shows that (X, p). and hence (T, t). is not a
:opological group. D

We sce that, unlike the translation, the left translation [f] {f0 of],
iixed, aced not be continuous in T.

4. Space of Schwarzian Derivatives

4.1. Mapping into the Space of Derivatives

The universal Teichmüller space was defined by means of quasiconformal
self-mappings of the upper half-plane. In this scction and in section 5, we

the roles of the upper lower Now is a self-mapping
of the lower half-plane H' and f,, is conformal in the upper half-plane H. This
change, which does not áfrect any of the results in sections 1—3, simplifies
notation here, because we are now dealing primarily with the conformal part
of the mappings

It follows from what we proved in 1.3 that each point of the universal
Teichmüller space T can be represented by a normalized conformal mapping

It was Bers [6] who noticed the importance of forming the Schwarzian
derivative and defining the mapping

[p]—'SIIH

of T The image points, as Schwarzian derivatives, are holomorphic functions
in H, for which the norm defined in 11.1.3 is pertinent.

This leads us to introduce the space Q of all functions ço holomorphic in H
for which the hyperbolic sup norm

II Ii = sup4y2lp(z)t,
z€H



112 III. Universal Teichmtiller Space

z = x + ly, is finite. The space Q has a natural linear structure over the
complex numbers.

Furthermore, Q is complete. For if is a Cauchy sequence in Q, then
= is a Cauthy sequence in Since is complete, there

is a such that converges to in Here can be taken to be
continuous. Then q,, converges locally uniformly to q = because is
locally bounded. It follows that p Il holomorphic, — H —, 0, and p Q.
We conclude that Q is a Banach space. Its points are Schwarzian derivatives:
By Theorem 11.1.1 every function p e Q is the Schwarzian derivative of a
function f meromorphic in H.

Going back to the functions f,,, we write sp = By Theorem 11.1.3,
II ii � 6. Therefore, [pJ —' maps T into Q. The mapping is well defined, for
if v is equivalent to we have = and hence s,, =

4.2. Comparison of Distances

We shall prove that the mapping [p3 -+ is a homeomorphism of T onto its
image in Q. To this end we shall compare the a-distance of two given points
[p] and [v] of T to the distance of their images s,, and in Q. We write

(P2) = II (p1 — (I'I II for points of Q.
In the special case v = 0, estimates in both directions can be obtained

directly from our previous results. If = 0, then also = 0, and q(s,1, 0) =
ii. Moreover, = By Theorem 11.3.2, � This

holds no matter how p is chosen from the equivalence class. Consequently,

� 6fl([p],0). (4.1)

We remark that is equal to the distance of from H (cf.
the remark at the end of 1.5).

In order to get an inequality in the opposite,, direction, we choose an
arbitrary eQ such that II ii <2. By Theorems 11.1.1 and 11.5.1, there is a
normalized quasiconformal mapping f of the plane which is conformal in H,
for which S11K = (P,and whose complex dilatation p in the lower half-plane
is obtained from the formula = — 2y2 q,(z), z H. For this mapping f =

we have ii = 11/2. Hence,

� (4.2)

We assumed that 0) < 2. But since all a-distances are <1, (4.2) holds
trivially if � 2.

We shall now generalize (4.1) and (4.2) for arbitrary points [p] and [v]. We
start with the transformation rule

liSp — SVIIH = IS1 (4.3)

for the Schwarzian derivatives (formula (1.10) in 11.1.3). We write = f,(H)
and apply Theorem 11.3.2 to the conformal mapping w = in the
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quasidisc .4,. It follows that

— � oo(AJII L
here o0(A,) = 6 + ô(Á,,) is the outer radius of univalence of A,. In view of
(4.3), this yields the estimate

� [v]), (4.4)

which is the desired generalization of(4.1). Since a0(A,) �.12, we could use as
the coefficient on the right-hand side the absolute constant 12. On the other
hand, a0(A,) can be replaced by where AM fP(").

It is more difficult to generalize the inequality We choose v from its
equivalence class so that f, has the smallest possible maximal dilatation K,..
After this, we consider Schwarzian derivatives which are so close to s, that

s is the constant of Theorem 11.4.1. Then, by formula
(4.3),

HSWIIA. <s(K,).

We know that w has a quasiconformal extension, namely, f_of,'. However,
we prefer to extend w by utilizing Theorem 11.4.1, which makes it possible to
estimate the complex dilatation. By that theorem, w has a quasiconformal
extension to the plane such that the complex dilatation K of the extended
mapping satisfies the inequality

45
£(K,,) —

If the extended w is also denoted by w, then = w of, is a quasiconformal
extension of to the lower half-plane. Thus A. is equivalent to p. Because
w = o ',we have, therefore,

=
� fJ([p],[vJ).

Combining this with (4.5) we finally arrive at the inequality

� e(K,)/3({uJ,[v]), (4.6)

valid also if � e(K,). This contains (4.2) as a special case: If v = 0,

then K, = I and E(K,) = 2. Since the roles of p and v can be interchanged, we
can replace in (4.6) by e(K,fl.

4.3. Imbedding of the Universal Teichmüller Space

The estimates (4.4) and (4.6) show that the and q-metrics are topologically
equivalent. Thus a new important model is obtained for the topological space
(T,t).
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Theorem 4.1. The mapping

[/4]

a homeomorphism of the universal Teichinüller space onto its image in Q.

We noted already in that (47) is well defined in 7 If [p3 and [v]
ave the same image, it follows from the normalization that = f,IH, i.e.,
and v are equivalent. Hence (4.7) is injective. Inequality (4.4) shows that

i.7) is continuous, and (4.6) that its inverse is continuous. 0

In 4.5 we shall show that the image of T under the homeomorphism (4.7)
open in Q. (We have almost proved this in establishing (4.6).) The mapping

which will later be considered in connection with an arbitrary Teich-
nüller space, is called the Bers imbedding of TeichmUller space.

By Theorem 4.1, the convergence Sfl,. in Q implies that —' [it] in
Hence, by Lemma 2.2 and the remark following Theorem 2.3, —*

uniformly in H.
Anticipating developments in Chapter V, we denote the image of T under

(4.7) by T(1). When there is no fear of confusion, we often identify T(1) with
universal Teichmüller space. Like X, the space T(1) is simpler than T in

that its points are functions and not equivalence classes of functions.
We can also define T(l) = {Sf(f is conformal in H and has a quasicon-

formal extension to the plane}. For such an f is equal to a normalized
mapping modulo a Möbius transformation, which does not change the
Schwarzian derivative.

By Theorem 11.5.1, the set T(l) contains the open ball B(O, 2)

<2). In this ball, the inverse of the mapping (4.7) can be
described explicitly:

—÷ [p], — —2y2q(z).

The space (T(l), q) is not complete, even though it is homeomorphic to the
complete spaces (T,r), (T,fl) and (X,p). In order to prove this, it is sufficient
to find an Sf E Q\T(1) and functions S1e T(1), n = 1, 2, ..., such that Sf —' S1

in Q. Then (S1) is a Cauchy sequence in T(l) but its limit is not in T(l). An
example is provided by the functions z -+ f(z) = logz, z = in H,
which we considered, for another purpose, in 11.1.4. Since

S1,,(z) = (1 —

we have = 2(1 — 1/n2) < 2. By Theorem 11.5.1, the has a
quasiconformal extension to the plane. Hence S1e T(1). In 11.1.4 we saw
already that

— S,Ij = 2/n2 -+0.

But since z —* log z does not even have a homeomorphic extension, Sf is not
in T(l).
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4.4. Schwarzian Derivatives of Univalent Functions

Let us define the set

u = univalent in H).

Then trivially T(1) U, and by Theorem 11.1.3, U c Q. More precisely, we
conclude from Theorem IL 1.3 that U is contained in the closure of the ball
B(O, 6) {4 Q I 114' II <6}. On the other hand, it follows from Theorem 11.5.2
that U contains the closure of B(O, 2).

Let f1(w) = w + 1/w,f2(w) = w — l/w. If h is a conformal mapping of the
upper half-plane onto {wlfwI> 1), then S1101,, 5,20,16 U. From the calcula-
tions in 11.2.6 it follows that — S120,. II = 12. We conclude that the
diameter of U is 12.

The set U is closed in Q. For suppose that eU, n = 1, 2, ..., and that S,
converges to S1 in Q. We show that f is univalent.

We are free to compose the functions with arbitrary Möbius transforma-
tions. There is no loss of generality, therefore, in assuming that every f,, fixes
the same three points a1, a2, a3 in H. By Theorem 1.2.1, the family is then
normal. Consequently, (fe) contains a which is locally uniformly
convergent in H. By renumbering the functions we may assume that (fe) itself
has this property. The limit g = fixes a1, 02 and a3, and is there-
fore univalent in H. At every point z E H we have urn = S9(z) and also
urn S1(z) = Sf(z). Hence, I differs from g by a Möbius transformation, and so
f is univalent.

Since U is closed and T(l) U, the closure of T(1) is contained in U. If
U, we can always find functions with T(1) such that

f(z) = locally uniformly in H. (4.8)

An approximating sequence with T(I) is obtained as follows. Set

z + i/n
1 —

n = 2, 3

•Then maps H onto the disc = {wlIw — iI <((n — 1)/(n + 1))Iw + it),
whose closure lies in H. As n —* the discs exhaust H, and g,,(z) -+
locally uniformly. Hence, by setting J, = fog,,, we obtain a sequence of
functions for which (4.8) is true. The property T(1) follows from the fact
that f,,(R) = f(aD,,) is a quasicircie (cf. the remark in 1.6.1).

If (4.8) holds, the derivatives off, converge to the derivatives off. Hence,

S1(z) = urn S1(z)
fl-4

locally uniformly in H. However, as we showed in 11.1.4, it does not neces-
sarily follow that —' in Q. We cannot conclude, therefore, that the
closure of T(1) coincides with U. A counterexample such as the one in 11.1.4
does not disprove this either, but actually the closure of T(1) is not the whole
of U. This will be explained in 4.6.
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4.5. Univalent Functions and the Universal TeichmUller Space

From Theorems 11.4.1 and 11.4.2 we obtain a remarkable connectibn between
the sets T(l) and U (Gehring [2]).

Theorem 4.2. The set T( 1) is the interior of U.

PROOF. We prove first that T(1) is an open subset of Q. Fix an arbitrary point
S1 of T(l). For ShEQ we write g = hof1, and conclude that g is meromor-
phic in the quasidisc f(H). By Theorem 11.4.1, there exists a positive constant
e such that if II IIf(H) <e, then g is univalent in f(II) and has a quasicon-
formal extension to the plane. Now choose She Q such that II Sh — S, HR <c.
Then

IISgIIj1ø> ItS,, — SI liii <
Because h = gof, we conclude that S,,E T(1). It follows that T(l) is àpen.

Since T(1) U, the proof will be complete if we show that mt U c T(1).
Choose a point mt U. We then have an £ > 0 such that

Let g be an arbitrary meromorphic function in the domain f(H), with the
property S5 II ((H) � If h = g of, then

— = HSSIIJ(u) � 8.

It follows that S,,e V c U, i.e., h is univalent in H. But then g = hof' is
univalent in f(H). What we have proved is that f(H) is an e-Schwarzian
domain. Hence, by Theorem 11.4.2, the domain f(H) is a quasidisc. We
conclude that S1e T(l) (cf. Lemma 1.6.2, statement 30) as we wished to
show. 0

The result that T(1) is open in Q was first proved by Ahlfors [4].

4.6. Closure of the Universal Teichmüller Space

For a long time it was a famous open problem, raised by Bers, whether the
closure of T( 1), which is contained in U, actually agrees with U. In 1978,
Gehring [3] showed that the answer to this question is in the negative. He
constructed a counterexample with the help of the simply connected domain
G which is the complement of the curve

y = {z = � t < co) u {0},

where a > 0 is small (Fig. 6). This 6 is not a Jordan domain, but more than
that, at the origin its boundary is so rigid that G possesses the, following
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Figure 6. not in the closure of T(1).

property: There a positive constant e such that if f is a conformal mapping
of G and uS1 II � e, then f(G) is not a Jordan domain.

For the proof we refer to Gehring [3]. With the aid of this result the
negative answer to the question of Bers is readily established.

Theorem 4.3. The closure of T(1) isa proper subset of U.

PROOF. Let G be the domain delined above and c > 0 the associated constant.
If h is a conformal mapping of the upper half-plane onto G, we prove that S1,
does not lie in the closure of T(l).

Consider an arbitrary point S,,, of the neighborhood h' — S1,II,,

For f w o h' we then have H hG = II — S1, hi H Therefore, eitherf is
not univalent or f is univalent but f(G) = w(H) is not a Jordan domain. It
follows that is not in T(1).

Recently, Theorem 4.3 has been strengthened: There, exists a confonnal
mapping h: H G, where G is now a Jordan domain, such that T(1)
(Flinn [1]).

Theorem 4.3 gives rise to the study of the boundary of T(1). If T(1) is
visualized as the collection of quasidiscs then Flinn's result means that
there are Jordan domains which do not belong to the boundary of T(1).
More information about the boundary of T(1) is provided by some recent
results in the joint paper of Astala and Gehring [1].

We showed in 4.4 that the diameter of U is 12. Since the closure of T(1)
does not coincide with U, we cannot conclude immediately that the diameter
of T(l) is also 12. But this can be proved if we modify slightly the example
which we used for U. For every positive r < 1, the functions w (w) = w +
nw, w f2(w) = w — nw are not only univalent in E = {wI wi> 1} but have
the quasiconformal extensions w —' w + and w w — nip, respectively.
Moreover, an easy calculation shows that

iim(1w12 — 1)21S11(w) — S12(w)f � 12r.

If h: H —. E is a conformal mapping, T(l), and by the invari-
ance formula (1.9) in 11.1.3, ii S,,01, — S120,, fi � I 2r. It follows that the set
T(1) has diameter 12.

Theorem 2.1 says that the universal Teichmüller is pathwise con-
nected. Therefore, T(1) and its closure are connected, and by Theorem 3.2,
the set T(1) is even contractible.
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Since U is not the closure of T(l), the connectedness of T(1) does not imply
that U is connected. In fact, the author just learned of a striking result of
Thurston El] which asserts that U possesses one-point components. (Thurs-
ton's result contains Theorem 4.3 as a corollary.)

5. Inner Radius of Univalence

5.1. Definition ofthe Inner Radius of Univalence

Let A be a simply connected domain of the extended plane whose boundary
consists of more than one point. In 11.2.6 we defined the outer radius of
univalence

a0(A) = sup{I1SJ hAlf univalent in A}

of the domain A. We proved that o0(A) is directly connected with the dis-
tance 5(A) of A from a disc (defined in 11.2.1): o0(A) = 5(A) + 6 for all do-
mains A. -

Let us now define the inner radius of univalence

a1(A) = IfS1 hA � a univalent in A)

of A. Note that a = 0 is always an admissible number, because iis,ir = 0
implies that f is a Möbius transformation and hence univalent. Like the
distance ö and the radius a0, the inner radius o1 is also invariant under
Möbius i.e., two Möbius equivalent domains have the same
a1.

The set {S,hf univalent in A} is closed in the family of functions holomor-
phic in A, when the topology is defined by the hyperbolic sup norm. We
proved this in 4.4 in the case where A was the upper half-plane, and the same
proof applies to an arbitrary A. It follows that we can replace sup bymax in
the definition of o,(A). In other words, if 1IS1JI4 = a,(4), then f is

Theorems 11.4.1 and 11.4.2 imply that o1(A) >0 if and only if A 4uasi-
disc. As we remarked before, this is an interesting result because quasicon-
formal mappings do not appear in the definition of the inner radius of
univalence.

For a disc,
or,(A) = 2.

This follows directly from Theorem 11.5.2. We shall see in 5.7 that for all
other domains A, the inner radius of univalence is smatter. Before that, we
shall show how to get information about o, from the results derivçd in the
previous section. For this purpose, these results must be slightly generalized
so that the special position of the half-plane in the definition of the universal
Teichmüller space is removed.
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5.2. Isomorphic Teichmüller Spaces

Throughout this section the roles of the upper and lower half-planes in
connection with the universal Teichmüller space are as in section 4, i.e., is
a self-mapping of the lower half-plane and is conformal in the upper
half-plane.

Let A be a quasidisc whose boundary contains the points 0, 1, and for
which the direction from 0 to I to orients positively with respect to A.
The universal Teichmüller space TA is defined by means of quasiconformal
self-mappings of the complement of A which fix 0, 1, and exactly as we did
it in 1.1 in the'case of a half-plane. Theorem 1.2 can be proved for A word for
word as in the case of a half-plane. It follows that the points of TA can be
represented by conformal mappings of A which are restrictions to A of
quasiconformal mappings of the plane and which fix the points 0, 1, and

The given quasidisc A can be regarded as a point of the universal Teich-
muller space T = TH. By this we mean that there is a unique point p e TM such
that = A whenever p (cf. 1.5).

Take a fixed mapping with the property = A, and consider the
transformation

(5.1)

This is an isomorphism between and TA in the sense that it is a bijective
isometry. Obviously, (5.1) is well defined in and a bijection of TM onto TA.
if J o = f2 oft', and so (5.1) preserves Teich-
muller distances.

Note that under (5.1) the origin is shifted: the point [Mo] TH maps to the
origin of TA. More generally, [p] maps to the point represented by the
complex dilatation of

Suppose TA. In order to study the mapping [p] —' S114. we define
as the' space of functions p holomorphic in A for which the norm

is finite. As in the case A = Ii, we set U4 = {p = univa-
lent in A); by Theorem 11.2.3, this is a subset of Q4. Finally, T4(1) = {S,€ UA)f
has a quasiconformal extension to the plane). Our previous space Q will now
be denoted by Q11.

The function w is meromorphic in A if and only if f is mero-
morphic in H. From HS.JA = IS1 — SJ IIH we get

IIS,h — � � + IIS,1.011K

and conclude that is finite if and only if uS, is finite. It follows that
the mapping

S1 —. (5.2)

is a bijection of Q1 Onto Q4. Clearly, (5.2) maps UM onto 114 and T11(l) onto
T4(1). If w1 i = 1,2, then by formula (1.9) in 11.1.3,

SW1 — iiA = H — H,1.
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We see that the mapping (5.2) of onto QA is also an isometry.
Let be the mapping [p] -+ S111, of TI, onto T,,(l) and the mapping

[ii) —. of T4 onto TA(l). Then (5.1) followed by the same as
followed by (5.2)

5.3. Inner Radius and Quasiconformal Extensions

Let A be a quasidisc. We define the spaces QA. UA, and TA(l) as in 5.2.
Let h: H —p A be a conformal mapping. Generalizing (5.2) we can define a
bijective isometry of Q,, onto QA by

Sf —4 S101, (5.3)

We conclude that for varying quasidiscs A, all spaces and TA(l) are
isomorphic. In particular, Theorem 4.2 can be generalized:

For all quasidiscs A,

TA(1)=intUA. (5.4)

This relation leads to a new characterization of the inner radius of univa-
lence. It follows from the definition of c, and from the subsequent remark
about sup and max in the definition that the closed ball E QA II H A

c,(A)} is contained in UA. By (5.4), the interior of this ball lies in TA(l). In
other words, if

ItS1 11.4 <c,(,4),

then f is not only infective in A but has a quasiconformal extension to the plane.
This result generalizes the statements of Theorems 11.5.1 and 11.5.2 which

are concerned with a disc. It sheds new light on the inner radius of univalence
and explains why quasiconformal mappings play a role. We conclude that
the definition of inner radius of univa!ence can be expressed in the form

a,(A) = inh{ S1 II A univalent in A, f(A) not a quasidisc}. (5.5)

This characterization yields upper bounds for c,(A).
Another way of expressing (5.5) is that B(0, c1(A)) = (Ic' (IA <o,(A)}

is the largest open ball in QA centered at the origin which is contained in
TA(l). The inverse of the isomorphism (5.3) takes this ball onto the ball
B(Sh, c1(A)) of Q,,. This gives a characterization for the inner radius of uni-
valence in geometric terms: If h is a conformal mapping of H onto a quasidisc
A, then u,(A) is the distance from the point 5h to the boundary of TH(l).

This result gives additional information about the mapping [ii] S111, of
T,, onto T,,(1). We proved in section 4 that is open in Now we can
express this result in a more precise form:

Theorem 5.1. The largest open ball of which is centered at the potut S11,
and lies in TI,(l) has the radius
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We recall that the domain constant t5also has a similar geometric interpre-
tation: (5(A) is the distance from the point S,, to the origin of TH(l). The
geometric interpretations of and (5 can actually be exploited. Before doing
it we shall estimate the inner radius for specific domains. We first
derive a lower estimate for a,(A) with the aid of quasiconformal reflections.

5.4. Inner Radius and Quasiconformal Reflections

The outer radius of univalence can often be readily determined thanks to the
relation = (5 + 6. In contrast, there seems to be no easy way to find the
exact value of the inner radius of univalence of a quasidisc. A modification of
the proof of Theorem 11.4.1 yields a lower bound for cr1(A) which turns out to
be sharp in certain cases.

Lemma 5.1. Let A be a bounded quasidisc which can be exhausted by the
domains A, = 0 < r < 1, and). a quasiconformal reflection in (5A
which is continuously off 3A. Let A' Then

— 1ô2(z)I
a,(A) � 2 inf 2 (5.6)

— zi

PROOF. Let f be a meromorphic function in A. Suppose first that f is holo-
morphic on As in the proof of Theorem 11.4.1, we setf w1/w2 and write

(z) — (A(z) —

— + (A(z) — z)w(z)

Let g = o and = be the complex dilatation of g. The reasoning
in the proof of Theorem 11.4.1 shows that if < 1, then f is univalent
and g is a quasiconformal extension of f (In proving Theorem 11.4.1 we
resorted to inequality (4.4) to determine the boundary values of ôg and (5g.
Here we can proceed more directly, since we may assume that the right-hand
expression in (5.6) is positive.)

Now

=
1 —

Since is a sense-reversing quasiconformal mapping, = is bounded
away from I in absolute value. It follows that if < I if and only if

< I.
Direct computatiOn gives

— &p(z) — + — z)2Sf(z)/2

— —

We conclude that if if < 1 if
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+ (2(z) — z)2S1(z)/21 �

t < 1. A fortiori, this is the case if

—
IS1(z)I � 2 2I2(z)—zI

This in turn holds whenever

I ô1(z)IIISJIIA<2 inf
2 2

(5. )
— zL ?74(Z)

Under this condition S1 is a point of the ball B(O, o,(A)) of QA.
1ff is not holomorphic on we apply the above reasoning to fI A, for

suitable values of r tending to 1. The function z rA(z/r) is a quasiconformal
reflection in 34,., and = It follows that whenever (5.7) holds,
the mappings 114, are univalent and have quasiconformal extensions with
uniformly bounded maximal dilatations. As in 11.4.3, a normal argu-
ment then shows that under (5.7), S16 TA(l), and (5.6) follows. 0
Remark. Let h be a Möbius transformation, q holoh', and = h(z).
Then

— 132(z)l — —

12(z) — k'(C)

This can be verified by direct computation (cf. 11.4.1). It follows that Lemma
5.1 holds for quasidiscs which are Möbius equivalent to a quasidisc A ful-
filling the conditions of the lemma.

Let us test the accuracy of (5.6). If A is the upper half-plane and 2(z) =
then

131(z)I — 131(z)I —
— 1

12(z) — z12,A(z)l — —

Hence (5.6) gives o,(A) � 2. We get the same result if A is the unit disc and
1(z) = 1/i. Consequently, in these two cases the lower bound in (5.6) is equal
to a,(A).

If A is the exterior of the ellipse {z = e' + k < 1,
we have the reflection z —' + k/w with 2w z + (z2 Now (5.6)
gives the simple estimate o,(A) � 2(1 — k)2. This lower bound is asyrnpkti-
cally correct as k —+0 or k —' 1, but is not sharp, as we shall see in 5.6.

5.5. Inner Radius of Sectors

Lemma 5.1, combined with the characterization (5.5), makes it possible to
determine r,(A) for sectors (Lehto [7], Lehtinen [2]).
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Theorem 5.2. Let A be the sectoral region {zlO < argz <kir}, 0 < k < 2. Then

"12k2 ifO<k�1,
<k<2. (5.8)

PROOF. A continuously differentiable quasiconformal reflection in can
be defined by the formula

A(z) = zeA.

It follows that

ô2(z)I — IÔA(z)I — 1/k .... II — 1/ki
— z12 — z12

Setting z = re'9 we obtain

— z = sin(O/k).

In addition,

1 2klmzim
= Ilk—i = 2kr sin(O/k).

i(z) IzI

Therefore,

— =

Thus (5.6) gives, in view of the Remark in 5.4,

o,(A)�2k(l II), (5.9)

which is (5.8) with > instead of equality.
We stilt have to show that equality holds in (5.9). Suppose first that

0 < k � 1. In this case it is easy to prove directly, without making use of
Lemma 5.1, that o1(A) = 2k2. The proof is based on the fact that is
equal to the distance from to where h: H —* A is a conformal
mapping. Now z —, h(z) = 2k is such a mapping. Hence, Sh(z) = (1 — k2)/(2z2)
and AShIIU = 2(1 — k2). For the function z -+ g(z) = Iogz we have S9(z) =
1/(2z2), and we know that S9 is not in TH(l), because g(H) is not a Jordan
domain. It follows that

� IS9 — SkIIH = 2k2.

In conjunction with (5.9), this yields the first result (5.8).
As we said, in this case the inequality (5.9) is readily obtained directly. In

fact, if p is a boundary point of TH(l) nearest to Sk, then

G1(A) = 114' — ShII � 1Q11 IISkII.

SinceQisnotin TH(1),wehave lkoll � 2,andso
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1,

Figure 7. SIeÔTA(1) closest to the origin.

o,(A) � 2 — 2(1 — k2) = 2k2.

(If no nearest point exists, an c-reasoning yields this inequality.)
In order to complete the proof, we still have to show that a,(A) � 4k — 2k2

if I <k <2. In view of (5.5), this follows if we find a conformal mapping
f: A —* B such that = 4k — 2k2 and B is not a Jordan domain.

Set

B = {zf Iargzl <kn/2} {zljarg(l — z)I <kit/2}.

This is not a Jordan domain because of the behavior of 3B at 00 (Fig. 7). The
Schwarzian derivative of the conformal mapping w1: H —' H B, with w1(0) =
1, w1(cc) = 0, w1(1) = can be computed (see Nehari.[2], p. 203). it follows
that

4—k2 2k—k2 k2—2k
= Sz2

+
2(z — if +

2z(z — If
A conformal mapping w: H -+ B is obtained if the map z w1(z2), defined in
the first quadrant of the plane, is reflected in the imaginary axis. The compo-
sition rule for Schwarzian derivatives yields

i—k2 4k—2k2
= 2z2

+ (2 —

With h(z) = the function f = w a h' maps A conformally onto B. Since
uS1 = — II,,, we finally arrive at the desired result

4y2(4k — 2k2)
2uS1 hA = sup 2 2 2 2 2 = 4k — 2k—y —1) +4xy

This completes the proof of (5.8). The example of the conformal mapping
f: A —. B is due to Lehtinen [2]. 0
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5.6. Inner Radius of Ellipses and Polygons

In many cases Theorem 5.2, in conjunction with the fact that the hyperbolic
metric depends monotonically on the domain, provides an efficient means for
deriving estimates of the inner radius. The underlying ideas, which are due to
Lehtinen ([5]; cf. also [41), are in the following two lemmas.

Lemma 5.2. Let A be a quasidisc which is contained in a domain B4 Möbius
equivalent to the sector A4 = <kirf2}. If 0 < k � 1, assume that a
vertex v of B4 lies on Then

ey,(A) � 2k2.

If 1 <k < 2, assume that there are points and z2 in 3A such that for a
Möbius transformation g mappuzg B4 onto A4, g(z1) g(z2) =
Then

a,(A) � 4k — 2k2.

PROOF. Suppose first that 0 < k � 1. Let g be a Möbius transformation
mapping B4 onto A4 with g(v) = 0. Set f(z) = logg(z). Then f(A) is not a
quasidisc, and so by (5.5), o,(A) � IS, 114. By the monotonicity of the hyper-
bolic metric (formula (1.2) in 1.1.1), IS, hA � II S1 = 2k2.

Suppose next that 1 <k < 2. From the proof of Theorem 5.2 we deduce
the existence of a conformal mappingf of A4 such that IS, IlAk = 4k — k2 and
that = f(e"2) = ao. Then f(g(A)) is not a Jordan domain, and by
reasoning as in the case 0 <k � 1, we arrive at the desired estimate. 0

The second lemma, which does not rest on Theorem 5.2, is more general.

Lemma 5.3. Let A be a quasidisc. if every two-point subset of A is contained in
the closure of a quasidisc B Afor which o1(B)> m, then

c71(A) � m.

PROOF. Let an e > 0 be given. There exists a meromorphic function fin A for
which IIS,114 < + c but which is not univalent. Let and 22 be two
different points of A such that f(z1) = f(z2), and B A a quasidisc such that
{z1,z2} B and o,(B)> m. Since eitherf is not univalent in B or else f(B)is
not a quasidisc, II S1 > o1(B). By the monotonicity of the hyperbolic metric,
II 5, 114 � Hence ø1(A) > m — e, and the lemma follows. 0

As a first application, let us reconsider the case in which A is the exterior
of the ellipse {z = e" + ke"jO � p < 2ir},0 � k < 1. The domain A is con-
tained in the infinite domain B whose boundary consists of two circular arcs
of which one passes through the points 1 + k, 1(1 — k), —(1 + k) and the
other through 1 + k, — i(1 — k), —(1 + k). Since B is Möbius equivalent to
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the angle A, with I = 1 + (4/n)arctan k, Lemma 5.2 yields the upper estimate

� 2 — (32/ir2)(arctan k)2.

On the other hand, simple geometry shows that each pair of points in A
lies in a domain B' c A Möbius equivalent to the angle A,. with I' = I + (2/n)
arctan(4k/((1 — k)(k2 + 6k + 1)1/2)). By Làmnia 5.3,

aj(A) � 2 — (8/ic2)(arctan(4k/((1 — k)(k2 + 6k + 1)h/2)))2.

This is sharper than the simple estimate o,(A) � 2(1 — k)2 we obtained from
Lemma 5.1.

In the second application of Lemmas 5.2 and 5.3, we suppose that A
is a finite polygonal domain with interior angles k,n, I = 1, 2, ..., n. Then
Lemma 5.2 yields immediately the upper estimate

—1k,— II)}. (5.10)

In certain cases, we can refine this result with the aid of Lemma 5.3 so as
to obtain the exact value of the inner radius. If A is a triangle or a regular
n-sided polygon, then (5.10) holds as an equality.

It follows that fora triangle A,

• (5.11)

where is the smallest angleof A, and for a regular n-sided polygon

og(A) = 2("
2)2

(5.12)

For the proofs we refer to Lehtinen [5]; the results (5.11) ahd (5.12) are also
due to Calvis [1].

5.7. General Estimates for the Inner Radius

Let h: H -. A be a conformal mapping. Then ö(Á) is the distance from Sh to
the origin of and u1(A) the distance from Sh to UH\TH(l). The set TH(l)
contains the ball B(O, 2), and U,, is contained in the closure of B(0, 6). It
follows that the double inequality

2 � ö(Á) + o,(A) � 6

holds for all domains A conformally equivalent to a disc.
The left-hand inequality o,(A) � 2 — 5(A) is an equality for all sectors

A = {zfO < argz <kn}, 0 < k � 1, because by Theorem 5.2, = 2k2,
and we have earlier computed 5(A) = 2(1 — k2). Other extremals are ob-
tained as follows. Consider a domain for which II fl = 2 and which is not a
quasidisc. If 0 < r < 1 and S, = rSh, then for A = 1(H), we have 5(A) = 2r
and ci1(A) = 2(1 — r).
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The upper estimate r,(A) � 6 5(A) is of interest only if ö(Á) is close to 6.
For < 4, a better estimate can be derived.

Theorem 5.3. For all domains A con formally equivalent to a disc,

.� 2. t5.13)

Equality holds and only if A isa disc.

PROOF. Let A be an arbitrary quasidisc. Every Jordan domain is Möbius
equivalent to a subdomain of H having 0 and as boundary points. We may
assume, therefore, that A itself is such a domain.

In A, we consider the function z logz, for which S1(z) l/(2z2).
From the monotonicity of the hyperbolic metric it follows that S,. 'A � 2.
Because f maps both 0 and to infinity, f(A) is not a Jordan domain.

Hence, we obtain (5.13) from the characterization (5.5) of the inner radius.
The same idea, in a refined form. can be used to prove that 2 only

if A is a disc (Lehtinen [2J). We now assume that A c H has two unite
boundary points on the real axis. If A is not H, are two finite points, in

such that he open interval on between these points lies in the
complement of A simple geqmetric argument shows that A then lies in a
non-convex sector both of whose sides contain a point of t3A at an equal
distance from the vertex (for the details, see Lehtinen [2]). Therefore, we may
assume that A lies in an angle Ak = {z0 <arg: <kir}, 1 <k < 2, such that
the points I and are on the boundary of A.

Instead of the logarithm, we now consider the extremal mapping f of the
sectoral domain Ak exhibited in the proof of Theorem 5.2. Since f(I)
the image of A under fL4 is not a Jordan It follows from (5.5), the
monotonicity of the hyperbolic metric, and Theorem 5.2, that

c,(A) � IISfIAIIA < = 4k — 2k2 <2. 0

By Theorem 5.3, every j-oint 0 of has a distance < 2 from the
boundary of

ft is an open question what values the inner radius of univalence can
assume for K-quasidiscs. The secloral domains show that

inf{a1(A)IA K-quasidisc}

We may also ask whether Theorem 11.4.1 holds if e(K) is replaced by



CHAPTER IV

Riemann Surfaces

Introduction to Chapter IV
A number of textbooks have been written on the subject of Riemann surfaces.
In spite of this, we found it advisable to include in our presentation a chapter
in which we have collected the material on Riemann surfaces that will come
into play in Chapter V. A brief survey of the general theory of Riemann
surfaces is given in sections 1—3 and of groups of Möbius transformations in
section 4. We have occasionally lingered on some topics slightly longer than
would be strictly necessary for later needs, in order to provide the reader with
a broader background.

In section 1 standard definitions of manifolds and Riemann surfaces and
of functions and differentials are given. We have also treated in some detail
the classical problem of Gauss to map a portion of a surface imbedded in
euclidean three-space conformally into the plane. This problem inaugurated
the theory of quasiconformal mappings around 1825. It also gives a first hint
of the intrinsic role of quasiconformal mappings in the theory of Riemann
surfaces.

Section 2 deals with covering surfaces and their topology. The main results
are formulated but proofs are usually only sketched. References for complete
proofs are to the monograph Abhors and Sario [1].

In section 3, results of section 2 are applied to Riemann surfaces. In con-
junction with the general uniformization theorem, they yield the fundamental
result that, modulo conformal equivalence, every Riemann surface is the
quotient of a disc or the finite plane or the extended plane by a discontinuous
group of Möbius transformations. The section concludes with a study of how
mappings between Riemann surfaces induce mappings between the covering
surfaces and the covering groups.
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Section 4 provides a survey of some main features of the theory of groups
of Möbius transformations. For detailed proofs, reference is usually made to
the monograph of Lehner [1]. In section 5 we have collected various results
on compact Riemann surfaces, using Springer [1] as a reference.

Quadratic differentials play a remarkable role in the theory of Teichintiller
spaces. Therefore, the geometry and the metric induced by a quadratic differ-
ential are studied quite extensively in sections 6 and 7. Here we have largely
utilized the recent monograph of Strebef [6), to which we also refer for more
details.

1. Manifolds and Their Structures

1.1. Real Manifolds

A real n-dimensional manifold M is a Hausdorif space with a countable base
for topology which is locally homeomorphic to the euclidean space W'. This
means that to every point p M there is an open neighborhood U M of p
and a homeomorphism Ii of U onto an open set in R.. Such a mapping h is
calhd a local on M. A set of local parameters is said to be an atlas
of M if the unlos oftheIr domains covers M.

Let h1, 112 be local parameters on M such that their domains U1 and U2
have Intersection. Restricting h1 and h2 to U1 n U2, we obtain a
homecnl*phlc mapping h2 o between the open sets h1(U1 n and

U3) In R1. With the help Of this induced mapping, which we call a
lrwuformation, properties definable in can be transported to the

manifold M.
An alMa Is called differentiable if for all pairs of local parameters, the

parameter transformations are differentiable where defined. A maximal dif-
ferentiable atlas is called a differentiable structure on the manifold, and a
manifold with a differentiable structure is a dWerentiable manifold. When
speaking in the following of the local parameters on a differentiable manifold,
we always assume that the parameters belong to its differentiable structure.

With obvious modifications, the method used for defining differentiable
manifolds leads to manifolds with other structures. For instance, if every
parameter transformation is of class Ck (has continuous partial derivatives
up to order k), we speak of Or if the word "differentiable" is
replaced by "real-analytic", we obtain real-analytic manifolds.

A continuous map f of a differentiable manifold M into a differentiable
manifold N is said to be differentiable at a point pe M if there are local
parameters I, and k, defined in neighborhoods of p and f(p), respectively,
such that the composition k of a h1 is differentiable at h(p). 1ff is differenti-
able at p. then k of o is differentiable at h(p) for all local parameters h and
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k near p and f(p). The map f: M — N is said to be differentiable if it is
differentiable at every point of M.

A path on a manifold M is a continuous mapping of an interval into M. If
M is differentiable, we can speak of a differentiable path.

Let f be a mapping of an n-dimensional Ct-manifold M into a manifold N.
The function f is said to be (Lebesgue) measurable on M if for every local
parameter h on M defined in an open set U, the function .10 n is measurable
with respect to n-dimensional Lebesgue measure, i.e., if for every open set
G N. the inverse irvage (f" 'r'r'(G)= is a measurable
subset of h(U). If the preimage Ii(U is always Borel set,f is Borel
measurable on M. latter definition can be used for au manifolds, because
Borel sets are preserved under homeomorphisms.

A surface is a connected two-dimensional manifold. A surface is aiways
pathwise connected. This follows by standard reasoning from the facts that a
surface is connected and, clearly, locally pathwise A surface may
or may not he compact. In the literature a compact surface is called
closed, a non-compact 'urface open.

1.2. Complex Analytic Manifolds

If we replace in the definition of an n-dimensional manifold in 1.1 the euclidean
space by the space C" of n-tuples of complex numbers, we get a complex
n-dimensional manifold. The euclidean space p2n becomes identified with
the space if we associate with (x1 + iy1,...,

+ iy1')e C". Therefore, a complex n-dimensional manifold can be regarded
as a real 2n-dimensional manifold.

Let M be a complex n-manifold. Suppose M has an atlas in which all
parameter transformations are biholomorphic, i.e., aleng with their inverses
they are holomorphic functions of n complex variables. Maximal atlases with
this property are called complex analytic structures on M. We say that a
manifold equipped with such a structure is a complex analytic

Definition. A one-dimensional connected complex analytic manifold is a
Riemann surface.

In the case n — 1 we also call the complex analytic structure conformal.
Thus a Riemann surface is a surface with a conformal structure.

Besides pl3ying a central role in complex analysis, the notion of a Riemann
surface has idiiiated or influenced a multitude of other mathematical disci-
plines. observation that the natural habitat of an analytic function
is of the complex plane but a surface which is locally

equivalent to a plane domain appears already in Rieinann's
thesis 1851. A rigorous definition of Riernann surface in modern
terms was given as early as 1913 by Weyl [1]. Weyl's monograph also
contains the first precise definition for a surface.
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A domain in the complex plane is to be regarded as the Ricmann surface
with its natural conformal structure induced by the identity mapping, unless
otherwise stated. The Riemann sphere is another example of a Riemann
surface with a natural conformal structure.

An open subset ofa Riemánn surface S is assumed to have the conformal
structure induced by the conformal structure of S. When speaking of the local
parameters on a Riemann surface, we always assume that the parameters
belong to its conformal structure.

Analytic functions can be defined on Riemann surfaces. A continuous map
f of a Riemann surface S into a Riemann surface W is analytic at a point p e S
if there are local parameters h and k, defined in a neighborhood of p and f(p),
such that kofolr' is holomorphic at h(pl. This is an invariant definition,
independent of the choice of the local parameters near p and 1(r). if f is
analytic at each point, I is an analytic mapping. In case W is the complex
plane, an analytic mapping f is said to be holomorphic, while if W is the
extended plane, f is termed meromorphic.

An injective analytic function on S is called a conformal mapping of S.
It follows fro.m the definitions that local parameters of S are conformal
mappings of open subsets of S into the complex plane.

1.3. Border of a Surface

A bordered surface is a connected Hausdorif space with a countable base for
topology in which there exists an open covering by sets homeomorphic
with sets open in the closed half-plane H {x + � O}. The concepts of a
local parameter and an atlas can be introduced in an obvious manner for
bordered surfaces.

Let be a bordered surface, p E S*, and h a homeomorphism of an open
• neighborhood of p onto an open subset of H. Let us assume that h(p) is an
interior point of H. If k is another homeomorphism of a neighborhood of p
onto an open set in H, we can choose a disc D with center at h(p) and with
closure in H, such that kol(' is homeomorphic in D. Now koh' is an
injection of D into the plane and it is continuous in the topology of the plane.
Since D is an open neighborhood of h(p) in the topology of the plane, it
follows from the invariance of open sets under continuous injections that
k(p) must be an interior point of H. Hence, if the image of p under one local
parameter of S is an interior point of H, then it is so under all local para-
meters of S* defined 'at p.

It follows that we can write S S is the subset of S* whose
points map into the interior of ii under any local parameter, and B the set
whose points map on the boundary of H. Clearly, S is open in S, and so B
is closed. Each neighborhood of every point of contains points of S.
Consequently, S* is the closure of S. It is easy to show that S is connected,
whence it follows that S is a surface. The set B is called the border of S*. Each
pointpEli has a neighborhood U in which is homeornorphic to the
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half-disc {z = x + iyIIzI < 1, y � O} under a parameter which maps p to the
origin and B U onto the line segment (— 1, 1). We conclude that B is a real
one-dimensional manifold.

A bordered Riemann surface is a bordered surface S* = S u B with a con-
formal structure on S determined by an atlas' on S is a
Riemann surface.

1.4. Differentials on Riemann Surfaces

Let S be a Riemann surface whose conformal structure is determined by the
local parameters; with domains i = 1, 2

Let f be a complex-valued holomorphic function on S. Suppose that z, and
have overlapping domains, and write f, = fo = fo It is custom-

ary to regard z, and Zj as complex variables. If we do so and differentiate
= we arrive at the invariance

= (1.1)

It follows that while an invariant derivative cannot be defined for f, we can
speak of the invariant differential df, defined locally by (1.1).

Let us now generalize the notion of a differential. A collection p of
complex-valued functions defined on U1, i = 1, 2, ..., is said to be an
(m, n)-differential on S if

dz. m St

(1.2)

in U1 n The function element is a representation of in terms' of the
local coordinate z1. The differential qs is said to be holomorphic if all functions

are holomorphic. Meromorphic differentials are defined similarly.
Two (m, n)-differentials and on S are equal if their local representations

in the same local coordinate always agree. In case and are mero-
morphic, we conclude t(iat ç = if their representations agree for some local
coordinate.

From the definition it is clear that the set of (m, n)-differentials on S and
the subset of all holomorphic (m, n)-differentials form linear spaces over the
complex numbers. We can also form the product of an (m, n)-differential and
a (p, q)-differential in an obvious manner and so obtain an (m + p. n + q)-
differential.

Particularly important in the following is the case m = 2, ii = 0. Then q, is
called a quadratic Such differentials will be studied in sections 5,
6, and 7 of this chapter, as a preparation for the applications in Chapter V. A
holomorphic or meromorphic (1,0)-differential is called an Abelian differ-
ential. Its square is a quadratic differential. Deeper connections between
holomorphic Abelian and quadratic differentials will be investigated in 5.5.
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Quasiconformal mappings between Riemann surfaces will be introduced
in V.1. It turns out that in this setting the complex dilatation generalizes to a
(— 1, 1)-differential. For a (— 1, 1)-differential q it follows from the invariance
(1.2) that we can speak of the function on S. if is Lebesgue measurable
in all local coordinates and II <1, then the (— I, 1)-differential q is called
a Beltrami

In applications (1, 1)-differentials are often important, because they can
be integrated with respect to the two-dimensional Lebesgue measure. This
follows from the fact that if z w is a change of local coordinates, then

=

where Iw'i2 is the Jacobian of the mapping z —* w. If p is a quadratic differ-
ential, then ço1 dzl I = I I dz, for all local representations Thus the
absolute value of a quadratic differential is a (1, 1)-differential. Another im-
portant observation is that the product of a quadratic differential and a
(— I, 1)-differential is a (1, 1)-differential.

1.5. Isothermal Coordinates

The natural question of how to make a concrete surface in into a Rie-
mann surface leads us to quasiconformal mappings. Let S be an orientable
C'-surface in R3, and f = the inverse of a local parameter of S. The
metric on S is defined locally by the line element ds, where

ds2
( + = Edx2 + 2Fdxdy + Gdy2. (1.3)

tiy /
Here

- - i-1

are the classical Gaussian quantities. The expression (1.3) is invariant, i.e.,
independent of the choice of the local parameter.

Using the complex notation dz = dx + i dy, = dx — i dy, we obtain
from (1.3)

ds = Al dz + (1.4)

with

E + G + 2 JIG — F2
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It is a classical result (and not difficult to prove by direct calculation) that
f is conformal in the sense that it preserves angles if and only if E G, F = 0.

This condition is equivalent to being identically zero. In this case

ds=)jdzj. *

Local coordinates z of S with this property are called isothermal.
Let us consider another local parameter of S which defines the local co-

ordinates w. If the coordinates z and w are both isothermal (ds = and
if the induced mapping z —' w is defined in some non-empty open set of the
plane, then

=

This shows that z —, w is conformal or indirectly conformal. Since S is on-
eatable, we may assume 2 —+ w is conformal. We conclude that isothermal
coordinates define a natural conformal structure for an orientable C'-surface,
which thus becomes a Riemann surface.

1.6. Riemann Surfaces and Quasiconformal Mappings

We are thus led to the problem of finding isothermal coordinates for
a surface. Without bothering about minimal conditions, we show how a
solution is obtained with the aid of the existence theorem for Beltrami
equations.

Theorem 1.1. Ecery orientahk' C2-surfiwe in can be made into a Riemann
surjace.

PRooF. Let S be an onientable C2-surface. Consider an arbitrary local para-
meter of S inducing local coordinates z in a domain A of the complex plane.
The theorem follows if we can transform the z-coordinates diffeomorphically
so that the new coordinates are isothermal.

Expressed in terms of z. the line element of S is of the form (1.4). Here jz
is continuously differentiable and by (1.5), we have < I in every
relatively compact subdomain of A. Let z -÷ w be a quasiconformal mapping
of such a subdomain with complex dilatation By the Existence theorem
1.4.4 such a mapping w exists, and by the remark in 1.4.5, w is continuously
differentiable and 0 everywhere. Comparison of

Idwi = + +

with (1.4) shows that
A

ds = —---Idwl,

•We see that the w-coordinates are isothermal, and the theorem is proved.
0
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In essence, Theorem 1.1 is due to Gauss [1]. Since every sense-preserving
diffeomorphism is locally quasiconformal, there is no undisputed criterion
to determine the first appearance of quasiconformal mappings in analysis.
But in developing the theory realized the importance of
finding locally injective solutions for a Beltrami equation (i.e., quasiconfqrinal
mappings with a given complex dilatation) and he actually constructed such
solutions. Therefore, it is not without justification. to say that quasiconformal
mappings entered analysis around .1825, in connection with the problem of
how to map a plane domain conformally onto a portion ofa surface
in euclidean three-space.

For Gauss conformal mappings were just a tool in differential geometry. It
was Riemann who recognized the fundamental connection between conforina!
mappings and complex analysis. Later, the concrete method of Theorem 1.1
to generate Riemann surfaces was used by Klein [1], whose work paved the
way fOr Weyl's monograph [1] cited in 1.2.

Theorem 1.1 and its proof mark the first indication of the intimate rela-
tionship between' Riemann surfaces and quasiconformal mappings. Later we
shall uncover plenty of additional evidence of the depth of this
and Theorem 1.1 will be generalized in various ways. -

2. of Covering Surfaces

2.1. Lifting of Paths

The unifying link between the theory of abstract surfaces and com-
plex analysis in the plane is provided by covering surfaces. In this section, we
shall discuss.topological properties of covering surfaces.

A smooth covering surface of a surface S is. a pair (W,f), where W is a
surface and f: W —, S is a local homeomorphism. The mapping I is called a
projection, and, the inverse images of a.point peS are said to lie over p. Being
locally a homeomorphism, f is both continuous and open.

Let y be a path on S, more precisely a continuous map of the closed unit
interval I = � t � l} into S. A path yI on W with initial point a = y'(O)
and with' the property foy' = y.is called a of y fvom a. It is easy to prove
that on' a smooth covering surface the lift from a fixed, 'inital point, is unique
(Ahlfors—Sario [1], p. 28)...

From the local injectiveness off it is clear that a part of y can always
lifted from arbitrary point a lying over its initial point. the wbole of y
cannot be lifted, there is a 0 < t0 � 1, such that y restricted to any closed.
subinterval of [0, t0) can be lifted from a but vi [0, to.] cannot be so lifted.

A smooth covering surface (W,f) of S is said to be unlimited (regular, in the
terminology of Ahlfors—Sario [I]) if every path on S has a lift to Wfrom each



136 IV. Riemann Surfaces

point lying over its initial point. In this case f: W —. S is surjective, and the
cardinality of the set! is the same for all points peS.

Unlimited covering surfaces have an important topological property
(Ahifors—Sarlo [I], p. 30).

Theorem 2.1 (Monodromy Theorem). Let (W,f) be an unlimited covering
surface of a surface S. and Yo and Yi homotopic paths on S. Then the lifts of
and on Wfrom the same initial point have the same terminal point and they
are homotopic.

Suppose, in particular, that the surface S is simply connected, i.e., that the
fundamental gioup of S is trivial. In this case the monoclromy theorem yields
an interesting corollary:

If (W,f) is an unlimited covering surface of a simply connected surface S,
then the mappingf: W —p S is a homeomorphism.

For since the projection f is continuous, open and surjective, it is enough
to show that f is injective. Assume that there are two points a and of W.
such that f(a) = f(b). A path y from a to b then has a projection on S which
is a closed curve. This is homotopic to zero, since S is simply connected. By
the monodromy theorem, y terminates at the same point as the constant path
t a. Hence a = b.

2.2. Covering Surfaces and the Fundamental Group

Let S be a surface, (W,f) an unlimited covering surface of S, and a a point of
S. We F. thøfundamental group of S whose elements are homo-
topy classes [y] of closed paths y on S from a. Fix a point a' W over a, and
consider a homotopy class [y] containing a path whose lift from a' is closed.
It follows from the Monodromy theorem that the lifts of all paths of [y] from
a' are then closed, and such elements [y] form a subgroup of FQ. We denote
this subgroup, determined by the triple (W, f, a'), by F'4..

The choice of a e S is immaterial. For given another point b S, consider a
path a on S from a to b; let b' be the terminal point of the lift of a from a'. If

then fy] -+ [c'ya] is a group isomorphism of F. onto Fb which
carries onto the subgroup F'b. determined by (W,f, b'). Also, if a' e W is
replaced by another point a" of W over a, then the groups determined by
(W,f,a') and (W,f,a") are conjugate subgroups of Fa. This Can be easily
verified.

An unlimited covering surface (W,f) of S is said to be normal if the triple
(W,f, a') determines a normal subgroup of F4. This notion is well defined,
because the property of a covering surface being normal does not depend on
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the choice of the points and W. If (W,f) is normal, then all triples
(14'ç/, a') with a' ef' {a) determine the same subgroup of F4.

There is an important connection between the topologies of W and S:

Let (W, f) be an unlimited covering surface of S. Then the fundamental group
of Wis isomorphic to the subgroup of F4 determined by a triple (W, f, a').

The proof is easy. We consider closed paths)' of W from a' and check that
[y] [Joy] is a required isomorphism (Ahlfors—Sario [1], p. 36).

The connection between the triples (W,f, a') and the subgroups ofF4 makes
it possible to partially order the unlimited covering surfaces of S according to

• strength. The strongest covering surfaces are those which determine the trivial
subgroup of F4. They are called universal covering surfaces of S. By what
just proved, a universal covering surface is simply connected. It is of course a
normal covering surface.

Every surface possesses universal covering surfaces. This can be shown by
direct construction. Given a surface S and a point a S, consider all paths y
of S from a to a point p. We define the set

W= {p'

and the mapping f: W —* S by the requirement f(p') p. Then a topology
can be introduced on Wso that (W,f) is a universal covering surface of S. For
the details of the proof we refer to Ahlfors—Sario [1], p. 35. There the more
general result is proved that, given any subgroup of F,, there exists ar un-
limited covering surface of S which determines this subgroup.

The notion of a universal covering surface is due to H. A. Schwarz, who
noticed its importance in the theory of Riemann surfaces (see Theorem 3.4 in
the next section).

2.3. Branched Covering Surfaces

In elementary function theory, Ricmann surfaccs are first encountered in
connection with the mapping z -+ z4. This defines the plane as a covering of
itself, but in such a way that the projection mapping has branch poin.ts at 0
and cc. More generally, if f: W -+ S is a non-constant analytic mapping
between the Riemann surfaces W and S,.then (W,f) need not be a smooth
covering surface of S. This state of affairs leads us to generalize the notion of
smooth covering surface.

A covering surface of a surface S is a pair (W,f), where W is a surface,
f: W —+ S is a continuous mapping, and every point p E W has a neigh-
borhood U such that (U\(p},ftU\{p}) is a smooth covering surface of
S\ {f(p)}.

A smooth covering surface is trivially a covering surface. A covering surface
which is not smooth is called branched.
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We can deduce from the definition that the projection mapping f: W S

behaves locally like the mapping z -. z" for suitable n. More precisely, the
following result is true:

Lemma 2.1. Let (W,f) be a covering surface of S. For every peW, there are
parameter discs U p and f( U), with local parameters k and h normalized by
k(p) = h(f(p)) = 0, such that in U,

(2.1)

where tz is a natural number.

The proof is given in AhlfQrs—Sario [1), p. 40. Conversely, if f: W-+ S is a
continuous mapping and the above condition holds, we conclude immediately
that (W, f) is a covering surface of S. Thus this condition characterizes
covering surfaces.

We mention here that there are other non-trivially equivalent character-
izations of covering surfaces, even thQugh we shall not be using them in what
follows. Let S and W be surfaces and f: W —÷ S a continuous mapping. Then
(W,f) is a covering surface of S if and only if f is locally homeomorphic with
the possible exception of a discrete set, or if and•only 1ff is light (the preimage
of a point is totally disconnected) and open. (A function which is continuous,
light and open is called an interior mapping. It is a famous theorem of StoIlov
that an interior mapping f of a plane domain is of the form f = oh, where
h is homeomorphic and analytic.)

2.4. Covering Groups

Let S be a surface and (W,f) its smooth covering surface. A cover trans-
formation g of W over S is a homeomorphism g: W W such that fog = f.
All such mappings g form a group G which is called the covering group of W
over S.

Two points of W equivalent under G have the same projection on S. 1f
conversely, any two points lying over the same point of S are equivalent
under G, then G is said to be transitive.

Let us consider the quotient space W/G and furnish it with the quotient
topology. Under certain conditions, WIG is a surface which is homeomorphic
to the surface S.

Theorem 2.2. If the projection mapping f: W S is sur)ective and the covering
group G of WDver S is transitive, then WIG and S are homeomorphic.

PROOF. We write [p] e WIG for the equivalence class containing the point
pEWand prove that
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[p] f(p) (2.2)

is a homeomorpbism of WIG onto S. First, it follows from f = fog, g E G,

that (2.2) is well defined in WIG. It is surjective, because f: W S is onto, and
injective, because G is transitive. Its continuity follows from the continuity of
f: W —. S, and the continuity of its inverse from the fact that f: W —. S is

locally homeomorphic. 0

The points of W are isolated with respect to 0 in the following sense:

Each point of the surface W has a neighborhood in which no two points are
equivalent under the action of the covering group.

• In fact, it follows from the definition of a cover transformation that an
open set in which the projection mapping f: W —, S is injective cannot contain
points equivalent modulo G. From this observation we can draw another
conclusion;

Except for the identity mappiFig, a cover transformation has no fixed points.

For assume that q is a fixed point for a transformation g €0. Since g is
continuous, it maps a point p near q onto a point g(p) near = q. Because
p and g(p) are equivalent under G, we conclude that for all p in a sufficiently
small neighborhood of q, we have g(p) = p. It follows that the set in which
g(p) p is open. It is also closed and nonvoid. Since a surface is connected,
we see that g is the identity mapping.

For the most part, we shall be dealing with the covering groups corre-
sponding to universal covering surfaces.

Theorem 2.3. The covering group of a universal covering surface W over a

surface S is transitive.

PROoF. Suppose that a and a' are points of W which lie over the same point
of S. Choose a point p W, join a to p by a path on W, project this path onto
5, and lift the projection back, but from the point a'. Let p' be the terminal.
point of this lift. We define g by the condition g(p) = p', and check that g is
well defined and a cover transformation of W over S. Hence a and a' are
equivalent under the covering group. 0

Combined with Theorem 2.3, Theorem 2.2 says that for a universal covering
surface W of S, the space WIG is always homeomorphic to S. The following
result sheds addinonal light on this connection.

Theorem 2.4. The covering group of a universal covering surface of S is iso-
morphic to the fundamental group of S.



140 IV. Riemann Surfaces

PRoOF. Given a point a E W, let y be a closed path on S from f(a), and be W
the terminal point of the lift of y from a. Then a and b both lie over f(a). By
Theorem .2.3, there is a unique cover transformation with property
g7(a) = b. It is easy to verify that [y] —, is the desired group isomorphism
(cf. Ahlfors—Sario (1], p. 38). Li

2.5. Properly Discontinuous Groups

Starting with a given surface S, we arrived via a covering surface (W,f) of S
at the covering group G of W over S. Theorem 2.2 tells that, under very
general conditions, the circle from S to W to G closes, in the sense that the
quotient W/G is homeomorphic to S.

We shall now take a different starting point and prescribe directly a surface
W together with a group G of homeomorphic self-mappings of W. Again, we
form the quotient space WIG, furnish it with the quotient topology, and want
to impose a condition on G which makes WIG a surface.

For a covering group, every point has a neighborhood in which no two
points are equivalent. However, this property does not characterize covering
groups. In fact, examples can be given of groups G which possess this prop-
erty but for which WIG is not even a .Uausdotff space. We need a stronger
condition on G.

A group G acting on W is said to be properly discontinuous if for any two
compact sets A, B W,, the intersection g(A) B is void, except for finitely
many g e G. Unlike a covering group, a properly discontinuous group need
not be fixed point free.

A point pe W is a limit point of a group G acting on W if there are distinct
mappings g,, e G, n = 1, 2, ..., such that p = urn for some point q e W. A
properly discontinuous group has no limit points. This follows immediately
from the definition of proper discontinuity.

A fixed point free properly discontinuous group G shares the property of
covering groups that every point pe W has a neighborhood in which no two
points are equivalent modulo G. For assume that there are two sequences of
different points a compact neighborhood A of p such that
lim a,, = urn b,, = p and b,, = g,, e G. Then g,,(A) n A 0.
If there are infinitely many different mappings g,,, then G is not properly
discontinuous. If there are only finitely many different transformations g,,.
then at least one of them appears infinitely many times in the sequence. For
such a mapping p is a fixed point.

Theorem 2.5. A transitive covering group is properly discontinuous.

PROOF. Let (W,f) be a covering surface of S, and suppose that the covering
group G of W over S is transitive. Given two compact sets A and B in W, we
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consider the subset C = = f(q)} of A x B. The complement of C
is open, because f is continuous and two different points f(p) and f(q) have
disjoint open neighborhoods in S. It follows that C is closed and hence
compact.

For g e G fixed, we write U9 = {(p, q) e Cl q = g(p)}. Each U, is open in C,
because! is a local homeomorphism. By the transitivity of G, the union of the
disjoint sets U,, where g runs through all elements of G, agrees with C. Since
C is compact, We conclude that only finitely many of the sets U, are non-
empty. Consequently, G is properly discontinuous. U

The following result is a converse to Theorem 2.2.

Theorem 2.6. Let W be a surface, G a properly discontinuous fixed point free
group of homeomorphisms of W onto itself, and f: W -+ WIG the canonical
projection. Then

1. W/G is a surface,
2. (W,f) is an unlimited covering surface of WIG,
3. G is the (transitive) covering group of Wover WIG.

PROOF. By definition,f is continuous. If A W, then f'(f(A)) = ug(A),
g e G, from which we conclude that f is open.

In order to prove that WIG is a Hausdorif space we consider two different
points f(a) and f(b) of W/G. Since G is properly discontinuous, there exists a
compact neighborhood B of b which does not contain any point g(a), g E G.
After this we conclude the existence of a compact neighborhood A of a
such that A g(B) is empty for every ge G. Then g1(A) g2(B) = 0 for all
g1, g2 e G, and it follows that f(A) and f(B) are disjoint neighborhoods of
f(a) and f(b).

Clearly WIG is connected and has a countable base for topology. In order
to find local parameters we fix a point p e W. Since G is properly discon-
tinuous and fixed point free, there exists an open neighborhood U of p such
that g(U) U = 0 for all mappings g€ G different from the identity. Then
fl U is injective, and if U is so small that it lies in the domain of a local
parameter h of W, then ho(fIU)' maps the open set f(U) in WIG homeo-
morphically onto an open set in the plane. Since f: W W/G is surjective, it
follows that WIG is a surface. Also, (W,f) is a smooth covering surface of
WIG.

From the definition it is clear that every g G is a cover transformation.
Conversely, let w be a cover transformation and p E W. Then there is a g E G
such that g(p) = w(p), for otherwise we would have f(w(p)) f(p). Hence
w =9.

Since G is a transitive covering group, it is not difficult to show that (W,f)
is an unlimited covering surface of WIG (cf. Ahlfors—Sario [1], p. 29). 0
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3. Uniformization of Riemann Surfaces

3.1. Lifted and Projected Conformal Structures

Let us now apply the results of section 2 to Riemann surfaces.

Theorem 3.1. Let S be a Riemann surface and (W,f) a smooth covering surface
of S. Then Wcprries a unique conformal structure which makes the projection
mapping fanalytic.i

PROOF. Let H be the conformal structure of S. For every point p e W we
choose a neighborhood U of p such that fI U is injective and f(U) is con-
tained in the domain of some heH. Then the atlas {ho(ftU)Ipe W} defines
a confonnal structure for W, and f is analytic with respect to this structure.

We say that this conformal structure of W is obtained by lifting the
conformal structure of S. If the projection f: W —÷ S is analytic with respect
to a conformal structure of W, then the condition which expresses this fact
shows directly that this structure is the same as the lifted structure. Thus the
uniqueness assertion in the theorem follows. El

Using the characterization (2.1) of a covering surface, we could show
without difficulty that Theorem 3.! holds also in the case where (W,f) is a
branched covering surface of S (cf. Ahifors—Sano J1J, p. 119).

In the sequel, a covering surface of a Riemann surface is always regarded
as the Riemann surface with the lifted conformal structure.

The following observation is immediate: Let S be a R'temann surface and
(W, f) a smooth covering surface of S. Then the cover transformations of W
over S are conformal. For locally a cover transformation g is of the form
(flg(U)Y1 oft U, and hence conformal.

Theorem 2.6 be refined in the setting of Riemann surfaces.

Theorem 3.2. Let W be a Riemann surface, G a properly discontinuous fixed
point free group of conformal self-mappings of W, and f: W -+ WIG the canoni-
cal projection. Then the surface WIG carries a unique conformal structure which

to the original conformal structure of W.

This follows immediately from the way the local parameters of WIG were
defined in the proof of Theorem 2.6. In the situation of Theorem 3.2, the
conformal structure of W is said to have been projected to WIG. If W is a
given Riemann surface, we always regard the quotient WIG as the Riemann
surface with the projected structure.

Suppose that G is a properly discontinuous group of conformal self-
mappings of a Riemann surface W, bin not fixed point free. We can still
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conclude that WIG is a surface and that WIG carries a conformal structure
which makes the projection mapping f: W —* WIG analytic. However, W is
now a covering surface of WIG which is branched at the fixed points of G
(Ahlfors—Sario [1], p. 121).

3.2. Ricmann Mapping Theorem

Our results in 2.4, 2.5 and 3.1 lead to a fundamental representation of
Riemann surfaces if they are combined with the following generalization of
the Riemann mapping theorem for plane domains.

Theorem 33 (Riemann Mapping Theorem). Every simply connected Riemann
surface is conformally equivalent to one and on(y one of the following plane
domains: the unit disc, the complex plane, or the extended plane.

This is a deep result, and a complete proof lengthy preparations.
We content ourselves, therefore, with sketching the main lines of a proof
based on the use of subharmonic functions. (Subharmonic functions are
defined on Riemann surfaces with the aid of parameters. This is possible
because subharmonicity is a local and conformally invariant property.)

First of all, a classification of Riemann surfaces into compact. parabolic,
and hyperbolic surfaces is needed. A non-compact Riemann surface S is
parabolic if every negative subharmonic function on S is constant; otherwise
S is hyperbolic.

Using subharmonic functions and Perron families, we can define Green's
functions for Riemann surfaces just as it is done for the case of plane domains.
The Green's function of a Riemann surface S with singularity at the point
peS isa function which is positive and harmonic on S — (p}. To describe its
singularity, we consider a local parameter z mapping a neighborhood of p
onto the unit disc such that z(p) = 0. Then it is required that + logizi be
harmonic at p; this is an invariant definition not depending on the choice qf
the local parameter. The Green's function is characterized by the property
that among all functions positive and harmonic on S — {p} and possessing
the same singularity at p as gp, the function 9,, is the smallest. If a Green's
functioa exists for some p ES, then it exists for every p eS. By a theorem of
Ohtsuka, the Green's function exists if and only if S is hyperbolic.

If S is parabolic or c.ompact, Green's functions do not exist but it is

possible to prove the existence of a function Up,q with the following prop-
erties: is harmonic in S — {p} — {q}; if z(p) 0, then — is
harmonic at p, and if z(q) = 0, then u,,q + is harmonic at q; outside
parameter discs (preimages of discs under z) containing p and q, the function

is bounded (Nevanlinna [1], p. 212).
Suppose now that S is simply connected. If S is hyperbolic, we take a

Green's function g,,, form its conjugate in a parametric disc, and extend
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exp( — + ig)) by analytic continuation to S. Using the Monodromy theo-
rem, we conclude that the extended function is single-valued on S. Finally,
application of the maximum principle shows that it maps S conformally onto
the unit disc (Nevanlinna [lJ, p. 204).

If S is parabolic or compact, a conformal mapping of S into the extended
plane can be constructed with the aid of the function Up,q (Nevanlinna [1],
p. 213). In case S is parabolic the boundary of the image consists of one point,
whereas the boundary is empty if S is compact.

Theorem 3.3 can also be proved by a method which is based on the use of
quasiconformal mappings (Bers [5]). The idea is to first construct a topo-
logical and locally quasiconformal mapping of the given Ricmann surface S
into the plane, then apply the existence theorem of Beltrami equations to
obtain a conformal mapping of S .(as Gauss did; cf. 1.6), and complete the
proof with the aid of the Riemann mapping theorem for plane domains.

Theorem 3.3 occupies a central position in the theory of Riemann surfaces.
It is often called the general uniformizatioi theorem. The first proofs are
attributed to Koebe (in 1907) and Poincaré.

3.3. Representation of Riemann Surfaces

Let S be an arbitrary Riemann surface and (W,f) its universal covering
surface. Since W is simply connected, we conclude from Riemann's mapping
theorem the existence of a conformal mapping w: W —÷ D, where D is the unit
disc, the finite plane or the extended plane. But then (D, Jo is also a
universal covering surface of the Riemann surface S, and we have proved the
following important result:

Every Riemann surface admits as its universal covering surface the unit disc,
the finite plane, or the extended plane.

This makes possible a far-reaching normalization of universal covering
surfaces. A consequence of basic importance is the fact that the elements of
the covering group of D over S, being conformal self-mappings of D, are
Möbius transformations.

Summarizing the topological results in 2.4—5 and the analytical results in
3.1—2, we obtain the basic representation theorem for Riemann surfaces.

Theorem 3.4. Given an arbitrary Riemann surface S. let D be its universal
covering surface, and G the covering group of D over S. Then S is conformally
equivalent to the Riemann surface DIG.

PROOF. It follows from Theorems 2.3, 2.5, and 3.2 that the quotient DIG is a
Riemann surface with the projected conformal structure. By Theorem 2.2, the
mapping (2.2) is a homeomorphism of DIG onto S. It is conformal, because
the conformal structure of S is also obtained by projection from D. 0
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Theorem 3.4 is the analytic counterpart of the topological result expressed
in 2.4 that every surface S is topologically equivalent to the quotient WIG,
where W is a universal covering surface of S.

Theorem 3.4 can be supplemented as follows: Let G be an arbitrary
properly discontinuous group of conformal mappings acting on D. Then DIG
is a Riemann surface. This follows from Theorem 3.2 and the remark made
after it.

3.4. Lifting of Continuous Mappings

We have seen above that, under certain circumstances, a mapping between
universal covering surfaces projects to a mapping between the underlying
surfaces. Here we take the opposite view and show how to lift mappings
between Riemann surfaces to mappings between their universal covering
surfaces.

Let q be a continuous mapping of a Riemann surface into another
Riemann surface S2, and (D1, it1) a universal covering surface of I = 1, 2.

Here we consider only the case D2. By 3.3, we can choose this common
surface, which we denote by 0, so that D is the unit disc, the complex plane
or the extended plane.

In the extended plane every Möbius transformation has a fixed point.
Thus, if the extended plane is the universal covering surface of a Riemann
surface, the covering group over this surface is trivial. By Theorem 3.4, the
surface itself is then the extended plane up to conformal equivalence. There-
fore, we can exclude this trivial case in what follows.

The continuous mapping 0: S1 —. S2 always induces a continuous mapping
f of D into itself. More precisely, there is a continuous f: D —' D such that

=ir2of. (3.1)

The construction off, which is called a lift is as follows: Fix first z0eD
and w0 {p(1t1(z0))}. If y is a path in 0 from z0 to:, we define f(z) as the
endpoint of the path which we obtain by lifting po it1 oy from w0. If y' is
'!nother path in D from z0 to z, then q' o o y and qo

it follows from the Monodromy theorem that f(z) is well defined. From
the definition it is clear that f is continuous.

The mapping q induces a mapping of the covering group G1 of D over S1
into the covering group 62 of D over S2: We shall show that the relation

O(g)of = fog (3.2)

defines a mapping 0 which is a homomorphism of G1 into G2.
in order to prove that (3.2) defines a homomorphism 0: G1 G2, we

choose an element geG1. From (3.1) it follows that

For every z D we thus have an element h G2 such that f(g(z)) = h(f(z)).
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0 >u-
0(g)=f•gf'

__jw;

— >s2

Figure S. Mappings induced by a homeomorphic

The mapping h depends only on g, not on the point z. For if y is a path in D
from z to z', then fogoy and hofoy start at the same point and have the
same projection op. It follows that they have the same terminal point,
i.e., the element of 62 corresponding to z' is also h. Hence (3.2) holds for
0(g) = h. From

O(92)ofogl = 0(g2og1)of.

we see that the mapping 0 is a homomorphism.
The mappings f and 0 induced by -p are not unique. 1ff is a lift of then

fog is also a lift of for every geG1. From fog = 0(g)of it follows that
such lifts are of the form hof, where h = 8(g) is an element of 02. The
mappings -

hof, heG2,

represent all possible lifts of q. We see this by repeating the reasoning which
showed that (3.2) defines an element 0(g) of 62.

1ff induces the group homomorphism 0, then hof induces the homo-
morphism g —i ho 0(g)o 1r1, which differs from 0 by an inner
of G2. We call two such homomorphisms equivalent and conclude that all
homomorphisms induced by qi: S1 S2 are equivalent.

Suppose that S1 S2 and ço S1 S2 determine equivalent homo-
morphisms. If induces 0, then can be so lifted that it also induces 8. In
fact, a lift f1 of induces a homomorphism g ho 0(g)o h1, he G2, and so
h'of1, which is a lift of induces 0.

If q: S1 —+ s2 is a homeomorphism, then so is every lift f: D -+ D. in this
case g —' 0(g) = fog of is an isomorphism of onto G2. (Fig. 8.)

3.5. Homotopic*4appings

Lifting of mappings is closely related to the topological notion of homotopy.
Let 600: S1 S2 be a homeomorphism and I {tIO � t � l} the unit interval.
A homeomorphism p S1 S2 is said to be horn otopic to if there is a



3. Uniformization of Riemann Surfaces 147

continuous mapping h: S1 x I —p such that h(.,O) = h(., 1) The
mapping h is called a homotopy from to

Suppose that h is a homotopy from to Given a lift J0 of the
mappings h(.,t): S1 —. S2, 0 � t 1, can then be so lifted that we obtain a
homotopy from to a lift of This homotopy lifting property follows
easily from the definitions.

Theorem 3.5. Two homeomorphisms q1: S1 —' S2. I = 0, 1, induce the same
group isomorphisms and only they are homotopic.

PROOF. Assume first that is homotopic to qi1. Let h be a homotopy from
to and f, a lift of h(., t), 0 � t 1, such that 1, is a homotopy between

f0andf1.
Choose g G1 and z eD, and consider the two paths t —' and

t —* (f0 o g o ) (J(z)). Both have the same initial point f0(g(z)) and the same
projection t —* on S2. Hence they agree, and for t I we obtain the
desired result

(3.3)

Assume, conversely, that p0 and have lifts .f0 and f1 such that (3.3)
holds for every geG1. If D is the unit disc, we define 0 < t < 1, as
follows: f,(z) is the point of the hyperbolic geodesic arc joining f0(z) and .11(z)
which divides the hyperbolic length of this arc in the ratio t: (1 — t). Then J
is a homotopy between f0 and f1.

Under the mapping 0(g) = o go (= o g ofr') the endpoints of the
arc map to f0(g(z)) and f1(g(z)). But since 0(g) leaves hyperbolic distances
invariant, 0(g) maps the point f,(z) to Hence, 9(g) of; = f; og. In other
words, all mappings 0 � t � 1, determine the same group homomorphism.
It follows that it

and
is the finite plane, all cover transformations are translations z z + b.

Therefore, the above reasoning remains valid if the' hyperbolic metric is
replaced by the euclidean. 0

3.6. Lifting of Differentials

Let S and W be Riemann surfaces and f: W -÷ S a non-constant analytic
mapping. It follows from the definition of a covering surface in 2.3 that (W,f)
is a covering surface of S (ci. Ahlfors-Sario [1], p. 119).

Let the conformal structures of W and S be detennined by the local
parameters and Ic1, respectively. Given an arbitrary point of W, we consider
an open neighborhood V of this point which is contained in the domaiti of a
local parameter h1 and is so small that f( V) lies in the domain of a local
parameter k1. For p e V, we write z1 = h,(p), =

Let be an (m, n)-differential on S (ci. 1.4), and 'let denote its represen-
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tation in the local coordinate wj Set

=
(3.4)

By formula (1.2), the function element does not depend on the partic-
ular choice of the parameter made in 1(V). We now require that (3.4) re-
mains valid when we change the parameter of W in V. Then (3.4) defines an
(m, n)-differential on V, and since we started with an arbitrary point of W, on
the whole surface W. It is called the 4ft of to W.

We can say a little more: Formula (3.4) shows that f: W —' S induces a
linear mapping of the space of holomorphic (m, n)-differentials of S into the
space of holomorphic (m, n)-differentials of W. 1ff is a conformal mapping of
W onto S, the induced mapping is bijective.

Suppose, in particular, that W = D is the universal covering surface of 5,
where D is the unit disc or the complex plane. In both crises the conformal
structure of S is determined by the local inverses of the projection mapping
of D onto S. The conformal structure of D is of course given by the identity
mapping z z.

What we gain from the use of the universal covering surface D is that we
now possess a global coordinate z eD for the representation of (p. In other
words, in (3.4) we can put z, = = z. Thus and formula (1.2) shows
that every is the restriction of a function globally defined in D. We denote
this function by p, i.e., we identify it with the collection of its restrictions. It
follows that the !!ft of the differential q, of S to the universal overing surface D
is a global representation of q in terms of the coordinate z e D.

Let g be an arbitrary element of the covering group G of D over S. Suppose
p z is a local parameter in an open subset U of S defined by the inverse of
a suitable restriction of the projection mapping. Then p —, g(z) is a local
parameter in U such that z and g(z) have the same preimage in U. Hence, it
follows from the invariance (1.2) that

= p(z) (3.5)

for every geG.
Conversely, if is a complex-valued function in D with the property (3.5),

then defines an (m, n)-differential of S. A function (p satisfying (3.5) is said to
be an (m, the group G. Thus there is no difference whether we
interpret to be a differential on the Riemann surface S or for the covering
group G of D over S.

As one application, we introduce the hyperbolic metric, which we have
so far considered in plane domains conformally equivalent to a disc, to
Riemann surfaces. Let S be a Riemann surface which has the unit disc D as
its universal covering surface. The Poincaré density z -. = 1/(1 — 1z12) of

0 satisfies the condition

(n°g)lg'I = (3.6)
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for every cover transformation g. It follows that is a (1/2, 1/2)-differential on
S, and = 11(1 — 1z12) is its global representation in the coordinate z ofD.

Now let y be a rectifiable arc on S. We define its hyperbolic length to be
equal to the hyperbolic length of its lift to D. Because of the invariance (3.6)
it does not matter how we choose the point of D lying over the initial point
of y.

In order to study the geodesics on 5, we take two points p and q of S and
join them by an arc y. Let z0 be a point of D over p. and let z1 denote the
terminal point of the lift of y from z0. Then the projection of the hyperbolic
geodesic from z0 to z has the shortest hyperbolic length in the homotopy
class of y. The infimum of these shortest lengths over all homotopy classes is
the hyperbolic distance between p and q. The infimum is attained. In fact, the
hyperbolic geodesic in D joining z0 to a "closest" point of the preimage of q
projects to a geodesic between p and q.

4. Groups of Möbius Transformations

4.1. Covering Groups Acting on the Plane

Let S be an arbitrary Riemann surface. We again normalize its universal
covering surface D so that D is the unit disc, the complex plane or the
extended plane, and denote by G the covering group of D over S. In view of
the representation S = DIG modulo conformal equivalence, the theory of
Riemann surfaces can be regarded as essentially equivalent with the theory of
discontinuous groups of Möbius transformations acting on D. Lehner ([1],
Chapter 1) gives an interesting survey of the historical development of the
theory of Möbius groups.

The points of DIG are called orbits of G. A subdomain of D is said to be a
fundamental domain of G if it contains at most one point of every orbit of G
and its closure in D meets evi..ry orbit of G.

In the cases where the universal covering surface D is the extended plane
or the complex plane, all possible covering groups of D over S can be readily
listed. We know already that if D is the extended plane, the covering group G
is trivial and S is conformally equivalent to D.

Suppose next that D is the complex plane. Since the elements of G have
their fixed point at they are translations z -. z + a. Here three possible
types of discontinuous groups G arise. First, G may be trivial, in which case
S is conformally equivalent to the finite plane. Second, G can be infinite,
generated by a transformation z -+ z + w, w 0. A fundamental domain of
such a group is the interior of the parallel strip bounded by straight lines
through 0 and through w and perpendicular to the vector from 0 to w.
Topologically, D/.G is an infinite cylinder. The function z —. exp(2miz/w),
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which is invariant under G, shows that DIG is conformally equivalent to the
finite plane punctured at 0.

A third possibility is that G has two generators z —' z + w1, z z + q2,
0. A fundamental domain is now the interior of the parallelo-

gram P with vertices at 0, + co2, and a2. In this case the Riemann
surface S = DIG is compact. For the closure P is compact and S is the image
of P under the continuous projection mapping D DIG.

Since the opposite sides of P are equivalent under G, it follows that
topologically S is a torus. Two different tori obtained in this fashion are
generally not conformally equivalent. The conformal structures on a torus
will be studied in V.6.

A simple geometric argument shows that there are no other ways to form
groups of translations which are properly discontinuous in the finite plane.

4.2. Fuchsian Groups

Let us now consider the case in which the Riemann surface S admits a disc D
as its universal covering surface. It follows from the results of section 3 that
the covering group G of D over S is a properly discontinuous fixed point free
group of Möbius transformations which keeps the disc D invariant. We
call such groups Fuchsian groups. (In the literature, fixed points are usually
allowed.) Conversely, every Fuchsian group G acting on D is the covering
group of D over the Riemann surface DIG.

An arbitrary Möbius transformation z —' w with two finite fixed points z1
and z2 has the representation

w—z1
= pet

W—Z2

If z2 = we have w — = pe'°(z — zr). The geometric action of a Möbius
transformation is best seen from this representation, which also gives rise to
the division of Möbius transformations (different from the identity) into four
classes. If p = 1, 0 0, the transformation is elliptic, if p 1, 9 = 0, it is
hyperbolic, and if p # 1, 0 0, it is loxodromic (0 � 0 < 2ir). A Möbius
transformation with only one fixed point is parabolic. The class of a Möbius
transformation g remains the same when g is conjugated by an arbitrary
Möbius transformation h, i.e., when g is replaced by hogoh1.

A loxodromic transformation does not keep any disc invariant. If an
elliptic transformation g maps a disc D onto itself, then one of the fixed points
of g lies inside D while the other is its mirror image with respect to 3D.

Let a Fuchsian group act on a disc D. Since it has no fixed points in D, it
follows from the reflection principle that the elements of the group do not
have fixed points in the complement of the closure of D either (with the
identity mapping excluded of course). We conclude that the elements of a
Fuchsian group are hyperbolic or parabolic, with fixed points on
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In studying a Fuchsian group G, we choose the invariant disc on which G
acts to be the upper half-plane. The elements of G are then of the form

az + b
z --s g(z)

= + d'
where the coefficients a, b, c, d are real and ad — bc > 0. Groups of Möbius
transformations with real coefficients are said to be real.

The conformally invariant hyperbolic metric ds = IdzI/2 Imz of H is a
natural tool for the study of the geometric properties of U. As before, we use
the notation for the distance between the points z1 and z2 of H in
this metric. We fix a point z0€H and denote by G(z0) the orbit of z0. For
every = 0, 1,... ,we write

= for all

The sets are non-empty, open and mutually disjoint, and the union of the
closures in H of all is H. If Z,, = g(zj) for g G, then = It follows
that all sets N, are congruent in the non-euclidean geometry of H. In studying
the properties of the sets we may therefore restrict ourselves to one of
them, say to N0, for which we also use the shorter notation N.

A point zeH lies on the boundary of N if and only if h(z,z0) <
for all Zt e G(z0) and equality holds for at least one Zk, k 0. The set
{ZEHIh(z,:0) = h(z,zk)} is the non-euclidean line which is the perpendicular
bisector of the non-euclidean segment joining z0 and Zk. It follows that N is
a convex polygon; in particular, N is connected. N is called the Dirichiet
region of U with center at z0.

From the definition of N we conclude that N is a fundamental domain of
G. Its boundary arcs lie either on the real axis, in which case they are said
to be free sides, or they are situated in H, with the possible exception of
endpoints on Il', and are called inner sides of N.

The inner sides of N are pairwise equivalent under G, whereas inner points
of a free side have no equivalent points in the closure of N. These properties
of N can be deduced without difficulty from the definition. More careful
analysis is required to prove the following fundamental result:

Theorem 4.1. The elements of a Fuchsian group which map the inner sides of a
Dirichlet region onto each other generate the whole group.

Dirichlet regions are studied in detail in Springer [1]; for the proof of
Theorem 4.1, see p. 237.

4.3. Elementary Groups

A group of Möbius transformations can of course be regarded as acting on
the extended plane. We shall now adopt this point of view.

The limit set L of a group G of Möbius transformations is the set of the
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limit points ofG. From the definition of a limit point, which was given in 2.5,
it follows that g(L) = L for every g e G. Also, L is closed (cf. Lehner [I], p. 88).
If L contains at most two points, the group G is said to be elementary.

MI elementary groups can be listed. (A comprehensive treatment of ele-
mentary groups is given in Ford [1], Chapter VI.) First of all, a finite group
is necessarily elementary, its limit set being empty. If the Riemann sphere
is rotated so that a regular solid remains invariant, then stereographic pro-
jection leads to Möbius transformations which form a finite group. All
non-cyclic finite groups of Möbius transformations are obtained from such
groups by conjugation.

The elements of a finite group are elliptic transformations. They are of
finite period, i.e., there is a natural number n such that the nth iterate of the
transformation is the identity mapping. A cyclic group generated by an
elliptic transformation which is not of finite period is very different: Every
point of the plane is a limit point of such a group(Lehner [1], p.87).

There is a second type of elementary groups G all of whose elements are
elliptic or parabolic transformations sharing a common fixed point. Then G
has this common fixed point as its sole limit point (Lehner [1], p. 93). A
simple example is the group generated by the elliptic transformation z — z

and the parabolic transformation z -+ 2 + 1. In this case L = J.

Any other infinite group is elementary if and only if it is cyclic and the
generator is not elliptic. The limit set L then agrees with the set of the fixed
points of the generator (Lehner [1), p. 87). Thus Lconsists of a single point if
the generator is parabolk and of two points if the generator is hyperbolic or
loxodromic.

An example of an elementary group acting on the upper half-
plane H is the real cyclic group

a>I.
In this case L = (0, The function

z (4.1)

is invariant under G. By studying the image of the fundamental domain
{z 6 HI I <Izi <a) under (4.1) we deduce that the annulus

A = (WI! < wi <
is a model of H/G. In other words, G is the covering group of the upper
half-plane H over the annulus A.

4.4. Kleinian Groups

Returning to an arbitrary group G of Möbius transformations, we denote by
the complement of the limit set L with respect to the plane. A point of is

called an ordinary point of G, and Q is said to be the set of discontinuity of G.
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The set (1 can be empty. A trivial example is the group of all Möbius trans-
formations. But fl can be empty even for a cyclic group: We pointed out
in 4.3 that this is always the case if the group is generated by an elliptic
transformation which is not of finite period.

Since L is closed, fl is open. The set C� need not be connected. From the
invariance of L under G it follows that g(Q) Cl for every g E G.

If Cl is not empty, G is called a Kleinian group. A Kleinian group is
countable (Lehner [1), p. 90). Fuchsian groups and elementary groups are of
course special cases of Kleinian groups.

Let g be a Möbius transformation and g(z) = (az + b)/(cz + d) its uni-
modular representation, i.e., ad — bc = 1. All 2 x 2-matrices with determi-
nant 1 form a group SL(2) under matrix multiplication. The mapping

g_+(° (4.2)

is an isomorphism of the group M of all Möbius transformations onto the
quotient group SL(2)/ ± 1, where I is the identity matrix.

If the distance of the matrices and (ba) is defined by

max{Iajj — = 1,2),

then SL(2) becomes a topological group. Via the mapping (4.2), the topo-
logical structure is transferred to M. A subgroup G of M is called discrete if
its elements are isolated in the topology of M. It is not difficult to prove that
0 is discrete if and only if it does not contain infinitesimal transformations,
i.e., if and only if there is no sequence of distinct elements G, n = 1, 2,...,
such that jim = z for every z [1], p. 96). From this characteriza-
tion of discreteness we conclude that if G is not discrete, then every point of
the plane is a limit point of G. It follows that a Kleinian group is discrete. The
converse is not true.

The set of discontinuity Cl can be characterized by means of normal
families. Let A be a domain of the plane and G a Kleinian group. The family
{9IAIgeG} is normal (f and only 4f A is a subdomain of fl(Lehner [1], p. 98).
In particular, if Cl is connected, then Cl is the largest domain in which the
mappings g e G constitute a normal family.

4.5. Structure of the Limit Set

The normal family criterion for sets of discontinuity can be used to proving
the following result, which reveals several properties of the limit set (Lehner
[1], p. 103).

Lemma 4.1. For a Kleinian group G, euery point €L is the cluster point of
each orbit G(z), with the possible exception of z = and one other point z EL.
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We first deduce from this lemma that if G is not elementary, every poinuof
L is the cluster point of other limit points. Hence, L is then always a perfect
set. It follows that for Möbius group:; there is a striking dichotQmy: Either the
limit set contains at most two points or else it contains uncountably many.
points.

A second conclusion from Lcmma 4.1 is that the limit set of a Kleinian
group agrees with the boundary of the set of discontinuity. For we have trivially

= so that L. On the other hand, we infer £rom Lemma 4.1
that L c �i. Hence, L c: Li n L = and we obtain the desired result

L (4.3)

Third, Lemma 4.1 (or (4.3)) shows that the limit set of a Kleinian group is
nowhere dense in the plane. For to every there is a point z e and
mappings e G, such For Fuchsian groups the same reasoning
gives the following result:

The limit set of a group acting on a disc D is either the whole
boundary or a nowhere dense subset of

If the limit set of a Fuchsian group G agrees with the boundary of the
invariant disc, G is said to be of the first kind (or horocyclic). Otherwise, G is
of the sccond kind. 41 follows that for groups of the first ti has
components, whereas �i is connected if the group is of the second kind.

For a Kicinian group G,let F denote the set of the fixed points of its
elements (other than the identity). If g e G and z is a fixed point of g0 E G, then
g(z) is fixed point of go Yo° g Hence g(F) = F for every g E G.

For the group generated by z — z + 2 and z — — l/z, the set is the union
of the upper and lower half-planes while the point i belongs to F. This shows
that F need not be a subset of L even though the group is infinite. But a

Kleinian group does not contain elliptic transformations of finite period, then
the closure ofthe set of its fixed points coincides with its limit set.

In particular, if G is a Fuchsian group of the first kind acting on the upper
half-plane, then the fixed points of G are everywhere dense on the real axis.

There are even sharper relations between F and L. Let Fh, F,, and F,,
denote the subsets of F consisting of the fixed points of the hyperbolic,
loxodromic and parabolic elements of the Kleinian group G. Then

L=F,, L=P,,, (4.4)

an element from the class iii question. The relations
(4.4) can be proved with the aid of Lemma 4.1 (cf. Lehner [1], p. 104).

Suppose that G is a Fuchsian group of the second kind acting on H. Then

is a bordered Riemann surface with \ L)/G as its border (cf. the definition
given in 1.3).
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From this representation of a bordered Riemann surface 5* we see that S*
can be imbedded in a larger Riemann surface. In fact, interpreting G as acting
on the plane, we form the quotient Q/G. By Theorem 3.2, it is a Riemann
surface, and clearly it contains S = H/G. The
Riemann surface \ (H u R))/G is called the mirror image of S = H/G, no
matter whether G be of the first or of the second kind.

4.6. Invariant Domains

The components of the set of discontinuity Q of a Kleinian group G are
disjoint domains. A component which is mapped onto itself by every element
of G is called an invariant domain of G.

A Kleinian group G with no fixed points in Q is Fuchsian if it has a disc in
0 as an invariant domain, and it is said to be quasi-F uchsian if it has a Jordan
domain in 0 as an invariant component.

The following result makes it possible to analyze invariant domains.

Lemma 4.2. Let G be a Kleinian group such that 0 has an invariant component
A which is a Jordan domain d!/Jerent from a disc. Then ÔA does not have a
tangent at a fixed point of a loxOdromic element of G.

PROOF. Assume that the tangent exists at a fixed point of a loxodromic
element g e G. We may suppose without loss of generality that the fixed point
of g lies at z = 0, that the tangent at z = 0 is the real axis and that cc is the
repulsive fixed point of g. Then g(z) = where 0 < r < I and 0 < 0 <2it.

Suppose first that (I it, and set

a = min(0/2,Iir — — 0)12);

then 0 <a � n/4. Consider the two angles = or çoe(ir — a,

it + a). p � Since the real axis is a tangent, we have for every a > 0 a disc
D0 centered at the origin, such that

(4.5)

Now choose zeM z 0. Then On the other hand,
it follows from the definition of a that g(z) This contradicts (4.5).

If z —. g(z) = — rz belongs to G, then go g is a hyperbolic transformation
with the same fixed points as g. A modification of the above proof shows that
3A does not have a tangent at a fixed point of a hyperbolic element of G. This
proves the lemma.

Combined with our previous results on Kleinian groups, Lemma 4.2 yields
the following result.
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Theorem 4.2. The boundary of an invariant component of a quasi-Fuchsian
group is either a circle or a Jordan curve which fails to have a tangent on an
everywhere dense set.

PROOF.. First, if A denotes an invariant component, we clearly have êÁ
From (4.3) we then conclude that êÁ L. If the group is not FuGhsian, it
always contains loxodromic elements (Lehner [1], p. 107). By (4.4), we have
in this case 3A F,. Hence, the theorem follows from Lemma 4.2. 0

It was Klein who first noticed that such weiid invariant Jordan domains
exist. He obtained such domains by direct construction. For details, inter-
esting pictures and almost philosophical comments on this unexpected
phenomenon we refer to Fricke—Klein [1]. Here we shall only briefly explain
Klein's method. In V.3.4 we shall arrive at invariant 4uasidiscs in a completely
different manner.

Let {D,Ii = 1,2,. .
. } be a closed chain of discs, i.e., the discs D, are disjoint

but for eveiy i, the closure of the union UI)j,J i, is connected. We form the
group 6 whose elements are compositions of an even number of reflections
in the circles aDs. The elements of G are Möbius transformations. We say that
G is generated by the chain {D, }.

If the number of the discs in the chain is one, G is trivial, if it is two, 6 is
cyclic, and if it is three, 6 is Fuchsian. In case the complement of the closure
of the union UD, of all discs is not empty, it is easy to see that this comple-
ment is contained in the set of discontinuity fl of G. In other words, G.isthen
always a Kleinian group.

The importance of KIem's method derives from the fact that under very
general conditions, has two invariant components which are comple-
mentary Jordan domains. This is the case, for instance, if the chain has only
a finite number (>2) of discs. The boundary of the invariant domain passes
through the points at which the closed discs touch each other and through
their reflected images (Fig. 9).

Figure 9. Klein's method of generating invariant domains.
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5. Compact Riemaun Surfaces

5.1. Covering Groups over Compact Surfaces

Let G be a Fuchsian group acting on the upper half-plane H. We recall that
all Dirichiet regions of G are congruent in the non-eucidean geometry induced
by the hyperbolic metric on H. The Dirichiet regions clearly have a bounded
hyperbolic diameter if and only if their closures lie in H. This property
characterizes compact Riemann surfaces.

Theorem 5.1. Let S be a Riemann surface and G the covering group of the upper
half-plane H over S. Then S is compact Vand only the Dirichlet regions of G
are bounded in the hyperbolic metric of H.

PROOF. Suppose first that S is compact. Let N be a Dirichiet region with
center a. We consider the hyperbolic discs = (zlh(z, a) < n}, n 1, 2
Their projections on S = H/G form an open covering of S. Since S is compact,
there is an n such that the projection of D, alone covers S. In other words, for
every z H there exists a mapping g e G for which h(g(z), a) <n. Now if zeN,
then h(z,a) h(g(z),a) for every geG. It follows that N c

Assume, conversely, that the closure of a Dirichiet region of G lies in H.
Then S is the image of a compact set under a continuous mapping and hence
compact. 0

Theorem 5.1 admits interesting conclusions.

Theorem 5.2. The covering group of the upper half-plane over a compact
Riemann surface is finitely generated and of the first kind.

PROOF. Let S be a compact Riemann surface and G the covering group of H
over S. The vertices of a Dirichict region of G cannot have a limit point in H.
Hence, by Theorem 5.1, a Dirichiet region for G has a finite number of sides.
We conclude using Theorem 4.1 that G is finitely generated.

In order to determine the limit set L of G, we consider an arbitrary point
x of the real axis and set U = — xl <r}. The hyperbolic distance
from the point x + iyeU to the semicircle — = r tends to as y-÷O.
On the other hand, by Theorem 5.1 the Dirichiet region containing x + iy
has a uniformly bounded hyperbolic diameter for every y > 0. It follows that
U contains a Dirichiet region for every r > 0. Consequently, x eL, and so L
is the whole real axis. 0
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5.2. Genus of a Compact Surface

Let S be a compact Riemann surface and 6 the covering group of Ii over S.
A Dirichiet region N for G is then a non-euclidean polygon with finitely
many sides, which are pairwise equivalent under G. Now it is possible to
transform N to another non-euclidean polygon which is also a fundamental
domain of G and whose sides follow each other according to the pattern

(5.1)

the sides a and li, being equivalent to and b, respectively. The number p is
at least 2. Such a polygon is called a normal polygon for C. The transformation
of a Dirichiet region to a normal polygon is described in Nevanlinna [I],
pp. 229—230.

The pattern (5.1), which generalizes the pattern a1 b1 a'1 b'1 of a torus (see
4.1), can be regarded as a representation of the compact Riemann surface S.
But it is in fact of a more general character. Let S be an arbitrary compact
orientable surface. A fixed (itecessarily finite) triangulation of S leads in a
natural manner to a polygon representing 5, in which identified sides either
have the simple pattern a1a'1 or else the pattern (5.1), with p = 1, 2,

(Springer [ii p. 117). Here p does not depend on the triangulation by way of
which we arrived at it. The pattern a1 a'1 occurs if and only if S is a topological
sphere.

The number pin (5.1) is called the genus of the compact surface S. A sphere
is said to have the genus p = 0. It follows that a torus has the genus p = I and
every compact Riemann surface which has the upper half-plane as a universal
covering surface has a genus p> 1.

The genus characterizes the topology: Two orient able compact surfaces 're
hoineomorphic if and only if they have the same genus. In analogy with the case
of a torus, the topological type of a surface can be read from the pattern (5.1):
4 )mpact orientable surface of genus p is a topological sphere with p handles.

These two results are proved in Springer [11, which contains a detailed
discussion of the relations of genus to such topological invariants as the
fundamental group, homology groups, and the Euler characteristic. We shall
study here certain analytic implications of genus.

5.3. Function Theory on Compact Riemann Surfaces

Let f be a non-constant meromorphic function on a compact Riemann surface
S of genus p. lIp = 0, the surface S can be identified with the extended plane,
and / is a rational function. In takes on every complex value
and cx, each of them the same number of times, provided of course that
multiple values are counted according to their multiplicities.

If p I. the study of f amounts to function theory on a torus. (Its ele-
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ments are described in Springer [1], P. 34.) The lift off to the universal cover-
ing surface C IS double-periodic, i.e., an elliptic function.

Regardless of p. the property of rational fitnctions remains trtk as indicated
above(Springer [1], p. 176): . .

Theorem 5.3. On a cOmpact Riemaun surface, a non-constant meromorphic
function assumes every value same finite of times.

For topological reasons, injective meromorphic functions vah exist only if
p = 0. The theory of meromorphic functions on compact Riemann sdrfaces is
classical analysis, which is intimately connected-wi th tile theory or
functions (see, e.g., Springer [1], p. 286). In a way, the theory was born beMre
the notion of a Riemann surface existed in afly form.

A striking example of the interrction between topology and analysis on
compact Riemann surfaces is provided -by the complex vector space con-
sisting of holomorphic Abelian differentials. The study of the periods of
regular harmonic differentials on a homology basis yields the following result
(Springer [1], p. 252):

On a compact Riernann surface of genus p. the dimension of the space of
holoinorphic Abe/ian differentials equal to p.

We shall use this result in determining the dimension of the complex
vector space formed by holomorpiiic quadratic differentials. This linear space
will play an important role in the theory of Tçichrnüller spaces. -

5.4. Divisors Compac't Surfaces

Let S be a compact Riemann surface. A divisor D on S is a of S
whose values arc integers and which is non-tero only at finitely many points
of S. Addition of two divisors D1 and D2 is defined by (D1 + D2)(p) =
D1(p) + D2(p). The degree of D, degD, is the sum of its values. We write
D1 � D2 if D1(p) � D2(p) for every point p eS. -

Let q be a holomorphic differential of an arbitrary type on S. Fix a pOint
p eS and consider two local parameters and z2 in a neighborhood of p,
both mapping p to zero. The mapping z1 —, z2 is conformal at the origin and
has, therefore, a non-zero derivative at 0. We conclude from formula (1.2) in
1.4 that if the representation of in z1 has a zero of order n ( � 0) at the origin,
then the representation of q in z2 also has a zero of order n at the Qrigin. Thus
the zeros of and their orders are well defined, being independent of local
parameters. Similarly, we infer that the poles of a mcrornorphic differential
and their orders can be defined in an invariant manner.

Let be a meromorphic differential on S with the zeros of order at the
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points and the poles of order n1 at the points qj• The El, of the
differential ip is the function which takes the value m1 value — at
qj, and vanishes dsewhere. Hence, deg El, = m, — E '4.

Suppose, in particular, that ç is a lunction on S. By Theorem 5.3, we then
have deg El, = 0. If and P2 are differentials of the same type, the quotient

is a function. From the definition of the divisor of a differential we see
that deg D,11,,2 degD,1 — deg D,2. It follows that the divisors of differentials
of the same type all have the same degree.

Given a divisor El, consider the family which consists of all meromorphic
functions f with El1 � El, together with the function which is identically zero.
This family is a complex linear space. Its dimension is called the dimension of
the divisor El by dim El.

If D = 0, i3e., D(p) = 0 for every p ES, the space consists of the constants,
and so

• dim0= 1. (5.2)

We also conclude that

dim El =0 if deg D > 0, (5.3)

because the space then contains only the zero function.

5.5. Riemann—Roch Theorem

We denote here by Q the complex vector space of all holomorphic quadratic
differentials on S. We fix a non-zero .,li eQ and write D, = D2. If q is an
arbitrary meromorphic quadratic differential, f = is a meromorphic
function. From El, = D1 + El2 we see that q' is holomorphic if and only if
D, � It follows that

dimQ = dim(—D2). (5.4)

Exactly the same reasoning can be applied to (1,0)-differentials. If D1 is the
divisor of a holomorphic Abelian differential, we conclude that the space of
these differentials has the dimension dim(—D1). On the other hand, by what
was said in 5.3, this dimension is equal to the genus p of S. Hence

dim(—D1) = p. (5.5)

The results (5.4) and (5.5) can be put together with the help of a classical
result on compact surfaces (Springer [1], p. 264).

Theorem 5.4 (Riemann—Roch Theorem). On a compact Riemann surface of
genus p, every divisor D satisfies the equation

- dimD = dirn(—D — D1) — degEl — p + 1. (5.6)
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Let us first apply (5.6) for Then, by (5.5) and (5.2), p= 1 +
deg D1 — p + 1, so that deg D1 = 2p — 2. By our previous remark, we have

degD,,=2p—2

for every meromorphic (1,0)-differential
Now let 42 be a meromorphic quadratic differential. Then is a

(1,0)-differential. From degD,, + degD,2 it thus follows that

degD,, = 4p —4. (5.7)

In particular, every non-zero holomorphic quadratic on a
surface of genus p has 4p - 4 zeros.

The dimension of Q can now be readily determined.

Theorem 5.5. On a compact Riemann surface of genus p, the space of holo-
morphic quadratic has dimension 1 !f p = 1 and 3p 3 if p> 1.

PRooF. In the case p = I, the Riemann—Roch theorem is not needed to
determine the dimension of Q. We saw in 4.1 that cover transformations are
translations z z + + nw2, m, neZ. Formula (3.5) shows, therefore,
that p is a holomorphic quadratic differential for the covering group G if and
only if q(z + mw1 + = ço(z) for allm and n. It follows that çoeQ is
a bounded holomorphic function in the complex plane and hence a constant.
Conversely, every constant is a quadratic differential for G. We see that
dimQ = 1.

Next suppose that p> 1. We fix a holomorphic quadratic differential and
denote its divisor by D2. After this, we choose D = — D2 in (5.6). Then, by
(5.4) and (5.7),

dimQ dim(D2 — D1) + 3p — 3. (5.8)

Now deg(D2 — = degD2 — degD1 = 2p — 2 > 0. Hence the desired result
dim Q 3p — 3 follows from (5.8) and (5.3). 0

If p = 0, the space Q reduces to zero.

6. Trajectories of Quadratic Differentials

6.1. Natural Parameters

Let be a holomorphic quadratic lifferential on a Riemann surface S. We
assume that p is not identically zero, and regard as fixed throughout this
section. A point peS is said to be regular if (p(p) 0, and critical if ço(p) = 0.

We showed in 5.4 tbat these are invariant definitions, independent of the
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representation of ço. Critical points form a discrete set, and on a compact
Riemann surface there are only finitely many of them

p bea regular point and q h(q) = z a
p mapping pto the origin. Since q(O) 0,

the origin in which the two branches of z are

single-valued. For a fixed branch of every integral function

is then also single-valued( this neighborhood of the orgin and uniquely
determined up to an additive constant. From the invariance of dz

under changes of parameter it follows that every is a function on S near p.
From 1Y(O) = 0 we conclude that there is a disc around the

origin which z —, maps injectively into the complex plane. It follows that
q —' w = is a local parameter near p. From

dw2 = ço(z)dz2

we see that with respect to w, the function representing the quadratic differ-
ential p is the function which is identically equal to 1.

We call w = a natural parameter at p. An arbitrary natural parameter
at p is of the form ± w + constant. We see that in each case, near a regular
point the local representation of in terms of a natural parameter is the con-
stant function 1.

There are natural parameters at a crItical point also. Suppose that p ES is
a zero of order n of (p. Again, let q h(q) = z be a local parameter near p
which maps p to the origin. Then there is a disc D(0, r) around the origil3 in
which p(z) with *(z) 0. We fix a single-valued branch of in
D(0,r). If n is odd, we cut D(O,r) along its positive radius I = {xIO � x <
and fix a branch of z —, in D(0, r) \ I; if n is even, no such cut is needed. In
either case

= L = + c1z + "), c0 0,

is single-valued in D(0, r) \ I. z —, co(z) = 2)12 is single-
valued and 0 in a disc D(0, r1) D(0, r). (Note that the cut I is no longer
needed in the definition of to.)

In I)(0.r1), the function

z —, = ZO(Z)2

is single-valued. Since it has the non-zero derivative at the origin,
it is injective in a disc D(O,r2) D(0,r1). It follows that

q

is a local parameter near p. We now call a natural parameter at p.
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From = (4)1)2 we obtain

(p(z)dz2 = (ii + 2)2CndC2 (6.1)

In other words, near a critical point of order n, a holomorphic quadratic
has the representation —* (1 + in terms of the natural

parameter C.
The idea of associating natural parameters with a quadratic differential is

due to Teichmülfer [1J.

6.2. Straight Lines and Trajectories

A continuously differentiable mapping y of an open interval I into the
Riemann surface S with a non-zero derivative on I is called a regular path on
S. Near a point p e y(t) we introduce a local parameter q —, h(q) z and write,
wIth a slight abuse of notation, z(t) = (h o y)(t). We assume that y does not
pass through any critical point of qi. The function t —' is then
well defined on I, of course modulo 2ir.

If

arg(.p(z(t))z'(t)2) = 0 = constant (6.2)

at every point tel, we say that v is a straight line (in the geometry induced by
the quadratic differential (p). The condition for y to be a straight line is often
expressed in the form

arg(q(z)dz2) = constant

along y. It follows from the definition that a straight line does not pass
through a zero of (p.

We say that a straight line is horizontal if U = 0, and vertical if U = iv. The
straight line (6.2) is a horizontal line for the quadratic differential (p. A
straight line (6.2) is called maximal if it is properly contained in any
regular curve on which (6.2) is true. A horizontal trajectory is a maximal
Lorizontal straight line. Similarly, a vertical trajectory is a maximal 'vertical
straight line.

In natural parameters, the trajectories have simple representations. Let w
be a natural parameter near a point of From dw2 = p(z) dz2 and from (6.2)
it folløws that locally, a horizontal straight line is a euclidean horizontal line
segment in the w-plane. Similarly, a vertical straight line is locally a euclidean
vertical segment.

Near a critical point pe S the behavior of trajectories is more complicated.
Let = w = 4)(z), be a natural parameter in a neighborhood of p.
Horizontal lines near p are horizontal line segments in the w-piane, whereas
in the C-plane, they are located in n + 2 different sectoral domains. Consider,
in particular, a horizontal line segment in the w-plane which contains the
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Regular point First-order zero

Figure 10. Horizontal trajectories under natural parameters.

origin. In view of the relation = we conclude that its preimage on
S consists of n + 2 rays emanating from the critical point p such that the
angle between two adjacent rays is equal to 2n/(n + 2) (Fig. 10).

A trajectory with an endpoint which is a zero of is called critical. The
number of critical horizontal trajectories is countable, and on a compact
Riemann surface there are only finitely many such trajectories.

From the definition it is that given a regular point of S, there exists
exactly one horizontal trajectory passing through that point.

6.3. Orientation of Trajectories

A sufficiently small .subarc of a horizontal trajectory is mapped by a natural
parameter onto a segment of the real axis. The orientation of the real axis can
thus be transferred locally to horizontal trajectories.

The global situation is more complicated. Let S0 = S \ {zeros of p}. For
any two natural parameters w1 and w2 of S0 for which w2 o is defined, we
have w2 o (z) = ± z + constant. The trajectory structure of is said to be
orientable if has an atlas of natural parameters w1, such that every change
of variables is of the form

wr1(z) = z ± constant.

More briefly, we then say that is orientable.
Let us assume that p is not orientable. We shall show that S then has a

two-sheeted covering surface branched over the zeros of of odd order,
such that the lift of to is orientable.

In order to prove this, we consider for a moment on the punctured
surface S0. Suppose that q, is a collection of holomorphic functions i = 1,

2, ..., defined in simply éonnected domains c S0 with local
Then = on

Consider all triples (p.;, cxi), where p E U1 and is holomorphic and satis-
fies = on We identify with if p = q and cc1d; =

at p = q. Let denote the set of identified triples and ir: S0 the
projection which maps (p. z•, x,) to p.
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We introduce the standard topology on It follows that is an
unlimited covenng surface of S0. It becomes a Riemann surface with the
conformal structure lifted from S0.

Let g be the natural extension of to the holes over the points of S \ S0.

More precisely, if the lift of' a closed path on S0 around a zero p of q'
terminates at the initial point, we have two points of ovar p (as we have over
all points of S0). Otherwise has a branch point of 2 over p. The latter
alternative occLrs if and only if p isa zero of odd order. If is
the natural extension of 7r: -. then it) is a two-sheeted branched
covering surface of S.

Finally, let and denote the lifts ofq' and to From the construction
it is clear that the functions form a holomorphic Abelian differential a and
that = a2. As the square of an Abelian differential is onentable, as we
wished to show.

6.4. Trajectories in the Large

In order to study the global structure of trajectories, we choose a regular
point Po ES, fix a branch of in a neighborhood of Po' and normalize it so
that = 0. Let r � be the largest number, such that the analytic
continuation 10 of the local inverse of maps the' disc D0 = D(O, r) injectively
into S. The image V0 = f0(D0) is called a maximal disc around Po' and
r = r(p0) is said to be its radius. The maximal disc V0 is uniquely determined
by qi, i.e., V0 does not depend on the choice of the integral function of
The function p —÷ r(p) is continuous in p.

Next we choose a point u1 €D0 which lies on the real axis R; then f0(u1) =
Pt is a regular point. Hence, there is a conformal mapping of D1 =
D(u1, r(p1)) onto the maximal disc V1 around p1. such that f1 = 10 in D0
and that f1 is the inverse of b1. By continuing this procedure, we obtain
connected chains of discs D0, D1, ..., D with centers on such that =

is a conformal mapping of D1 into S and that is a direct analytic
continuation off1.

Let G be the union of all the discs of such chains which we obtain
by starting from D0. Since the intersection of two chains is connected and
contains D0, the analytic continuation f off0 to G is single-valued. We write
1 G R and deduce that f(1) is the horizontal trajectory which passes
through the point Po•

If [a, b] is a closed subinterval of 1 on which f is injective, there is a
rectangle {u + ivla u b, —ö v ö} which f maps injectively into S.
The image of every horizontal line segment in this rectangle is a subarc of
some horizontal trajectory.

We shall now show that the character of the horizontal trajectory f(1)
varies, depending on whether f is injective or not on the whole interval 1.
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6.5. Periodic Trajectories

Suppose first that there are bE K such that f(a) = f(b). Among the
pairs of points of [a, b] at which I takes the same value, there is a pair u0, u1
with a minimal distance from each other. It is not difficult to show that I is

then periodic. in G, with the primitive period w = — u0 (cf. Strebel [6],
p. 39). In this case f can be continued analytically to the whole real axis by
periodicity. The horizontal trajectory = f([u0, u1]) f([O, ü]) is a
closed curve. There is a maximal rectangle R0 = {u + ivIO � u � w,v1 �
v � V2 } in whose interior f is analytic.

If f is injective in R0, then

maps the annulus A < conformally onto a ring
domain on S. The image is called the maximal annulus around the horizontal
trajectory Every circle constant in A maps onto a closed horizontal
trajectory of S. It follows that the maximal annulus around is swept out by
closed horizontal trajectories, freely homotopic to and all of the same
length co in the w-plane. From the maximality it is clear that if ct1 and c2 are
closed horizontal trajectories of S, their maximal annuli are either disjoint or
identical.

1ff is not injective in the rectangle R0, simple reasoning shows that I has
another primitive period co' and that f has an analytic extension through-
out the complex plane C (cf. Strebel [6], p. 41). The parallelogram with
vertices at the points 0, co, co + co' and co' and with the opposite sides identi-
fied is mapped by f bijectively onto S. We conclude that S is a torus. The pair
(C, I) is a universal covering surface of S. From the global representation
dw2 q(z) dz2 it follows that the straight lines on S are images under f of
euclidean straight lines in the plane. All horizontal trajectories are closed
curves on S.

6.6. Non.Periodic Trajectories

Let us now assume that the function f, obtained by analytic continuation of
a germ of 'b', is injectivc on the interval I Gr- P Then
f: I -. S is a parametric representation of the horizontal trajectory passing
through the point eS with which we started. The trajectory is now an open
arc, and we define its length to be the same as the length of I. (The metric

will be studied in the next section 7.) The two parts intp which
Po divides trajectory rays from We denote & = fffo, u,1,)),

Let L be the limit set of the ray i.e., L is the set of points p eS for which
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there exists a sequence of points I tending to such that f(u1) —+ p. The
limit set L is contained in the of a, and it does not depend on the
choice of the initial point Po of a.

Regarding the set L, there are three essentially different possibilities. First,
L may be empty. We then say that tends to the boundary of S, and call
a boundary ray. If both and a are boundary rays, the trajectory is said
to be a cross-cut of S. On a compact surface, there are no boundary rays.

Second, L might consist of a single point p. The point p cannot be regular,
because f could then be continued on past Hence, f(u) tends towards
the critical point p along as u on I. In this case, is called a critical
ray.

The remaining case is that L contains more than one point. Suppose p EL
is a regular point, and consider the horizontal trajectory cx,, through p. This
cannot be closed, because it could then be covered by an open annulus which
contains only closed trajectories. thoose another point q e and construct
an. open rectangle R0 such that f,,1R0 is injective and that the image of the
middle line of R0 contains, the trajectory arc from p to q. Since p E L, we have
points p1 E a, such that p. If e R0, the horizontal line segment in
R0 through f,,'(p1) maps on a subarc of a. There are infinitely many such
subarcs, and we conclude that a has infinite length.

The same reasoning shows that if the subarc of cc,, from p to q has length
a and if p1 p. then q1 = ± a) e cc with properly chosen signs
converge to q. Here q e a,, was arbitrarily chosen. We conclude that if p E L,
then the whole trajectory through p belongs to L.

The trajectory a has infinite length also in the case when p L is a critical
point. The ray cannot end at p, because L would then reduce to the single
point p. Therefore, at least one of the finitely many sectors into which the
horizontal trajectory rays emanating from p divide a neighborhood of p
contains infinitely many points p1 a. After this, the reasoning used in th
case where p was a regular point can be modified so as to yield the desired
result (Strebel [6], p. 44).

Consequently, if the limit set L of the ray contains more than one point,
then is always of infinite length. The ray is then said to be divergent.

Suppose that the initial point Po of belongs to the set L. From what we
just proved it follows that the whole trajectory a is then contained in L. Since
L lies in the closure of a, we conclude that in this case

L=i
A trajectory ray with L is called recurrent. A trajectory both rays

of which are recurrent is said to be a spiral, and its limit set L is called a spiral
set (Fig. 11).

On a compact Riemann surface, every divergent ray is recurrent and all
non-periodic are spirals, save for finitely many exceptions. (For
two simple examples, see Figs. 11 and 12. For a detailed account of tra-
jectories on compact surfaces, we refer to Strebel [6], § 11.)
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Figure 11. A torus and a part of its universal cover ng surface. A straight line projects
on a spiral.

Figure 12. Horizontal trajectories on a surface of genus 2. 4p —4=4 critical points

7. Geodesics of Quadratic Differentials

7.1. Definition of the Induced Metric

As in the previous section, qi is a holomorphic quadratic differential on a
Riemann surface S, and not identically zero. The invariant differential

(7.1)

is called the line element of the metric induced by (p.
Let y be a curve on S locally rectifiable with respect to the eucidean metric

in any parametric plane. The length of y in the metric induced by can be
obtained with the aid of the following geometric reasoning. First, if y lies in a
maximal disc around a point p, the length of y is equal to the eucidean length
of the image of y under a natural parameter defined in a neighborhood of p.
An y not passing through any critical points can be subdivided into
parts each one lying in a maximal disc. The length I(y) of y is the sum of the
lengths of these parts it is independent of the subdivision of y.

Since the differential (7.1) is an invariant on S, we can also define directly

1(y)
= J
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in terms of arbitrary local parameters. The length 1(y) is then well defined also
in the case where y passes through critical points.

The invariant tq,(z)I dx dy is called the area element of the (p-metric. Hence,
the total area of S is the of 42.

In the following, is fixed, and notions like distance, length, and area,
refer to the (p-metric, unless otherwise stated.

The area of a compact surface S is always finite. If the genus of S is 1, i.e.,
ifS is a torus, its universal covering surface is the complex plane. The lifted q'
is then bounded in the plane and hence constant. It follows that the (p-metric
is euclidean, a result at which we arrived in a different manner in 6.5.

7.2. Locally Shortest Curves

The existence of a unique shortest curve joining two given points of S can be.
without difficulty if the points are close to each other. The curve

itself can be described geometrically by use of natural parameters.

Theorem 7.1. Every point of a Riemann surface has a neighborhood in which
any two points can be joined by a unique shortest curve.

PROOF. Let a point p eS be given and suppose first that p is regular. Let V
be the maximal disc around p and {wI IwI <r} its image under a natural
parameter w = (t)(z). Let V0 V be the preimage of <r/2, and Pi' P2
arbitrary points of V0. Then the preimage Yo of the line segment connecting
'b(p1) and D(p2) is the unique shortest curve which joins p1 and P2 on S. For
let y Yo) be an arbitrary curve on S which joins p1 and If y s1ays in V,
then clearly I(y0) < 1(y). If y leaves V, then 1(y)> r> l(yo).

Suppose next that p is a zero of 42 of order n. We proved in 6.1 that if C is
a natural parameter near p, then

42(C)
= (n +

w = '1(e) = (7.2)

in a disc ICI <r. Let V0 now be the preiinage of the disc < 2_I on S.
Then any two points Pt and p2 in V0 can be connected by a unique shortest
curve. This is either a straight line segment in the w-plane, or it is composed
of two radii in the a-plane which emanate from the origin. The former case
occurs if and only if Iarg — arg C2 I <2n/(n + 2), where C1 and C2 are the
C-images of Pi and These conclusions can be drawn from (7.2); for the
details we refer to Strebel [6], p. 35. 0

It follows from the above that if the shortest curve is the union of two
radii, both angles 9 between these rays satisfy the inequality
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0> (7.3)n+2
This "angle condition" will be utilized in the study of globally shortest curves.

7.3. Geodesic Polygons

A curve y on S is called a geodesic if it is locally shortest, i.e., every point p
has a neighborhood Von S such that for any two points P1. P2 e V, no arc
joining Pi and P2 in V is shorter than the subarc of y from p1 to P2 From the
results of 7.2, we know the local structure of a geodesic. It will turn out that
a geodesic is also globally the unique shortest curve in its homotopy class.

A geodesic polygon is a curve which consists of open intervals of straight
lines (in the geometry of and of their endpoints. The endpoints can be
zeros of g. In case the polygon is a Jordan curve, it is called simple and
closed.

Assuming the existence of a geodesic, we shall first prove that it is uniquely
extremal in its homotopy class. The proof uses the argument principle in
its generalized form, in which the holomorphic function considered in a
subdomain of the complex plane is alhwed to have zeros on the boundary of
that domain.

Argument Principle. Let f be holomorphic in the closure of a plane domain A
bounded by finitely many piecewise regular curves. Let denote the arcs into
which the zeros E 9A off divide the boundary, and the interior angle at
bet ween the arcs and Yj. Then

J
d arg f(z)

J
d arg f(z) = in1 +

where rn are the orders of the zeros off in A and nj the orders of those on OA.

If f(z) s& 0 on 8A, this is the standard principle of argument. The refine-
ment says that the zeros on the boundary have the weights

Teichmüller ([1], p. 162) drew the following conclusion from the Argument.
principle.

41

Lemma 7.1 (Teichmiiller's Lemma). be holomorphic l,i the closure of a
domain A in the complex plane which :nded by a simple closed polygon in
the co-metric, whose sides the at the vertices. If and denote
the orders of the zeros of ço in A and on 8A, respectively, then

— (flj + 2 + sm,. (7.4)
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PROOF. On y, we have arg(q,(z) dz2) = constant, and so

d ai'g q,(z) + 2d(arg dz) = 0. (7.5)

The argument of the tangent vector dz increases by 2ic — — Oj) after a
full turn along This observation, coupled with (7.5) and the Argument
principle, yields

which is (7.4). 0

It follows from (7.4) that

(1 — + � 2. (7.6)

We conclude that there are at least three angles so small that

6, < (7.7)
+ 2

Hence, these angles do not satisfy the angle condition (7.3).

7.4. Minimum Property of Geodesics

In order to prove that a geodesic is globally the unique shortest curve in its
homotopy class, we need two auxiliary results. As before, we assume that we
have a fixed 4,-metric.

Lemma 7.2. Let S = G be a simply connected domain in the complex plane and
and 22 points of G. Then there exists at most one geodesic from to 22.

PROOF. Let us assume that there are two geodesics joining z1 and z2 in1G. If
they do not coincide we can find two subarcs, both from a point a to a point
b, which form a simple closed polygon. The angle condition (7.3) is satisfied
at the vertices, except possibly at the two points a and b. This is in contra-
diction with the fact that (7.7) holds for at least three angles. 0

A geodesic is called maximal if it is not a proper subset of any other
geodesic.

Lemma 7.3. In a simply connected subdomain of the complex plane every
maximal geodesic is a cross-cut.

PRool. Let y be a maximal geodesic in a simply connected plane domain
S = G. Fix a point 20 E y and represent a ray of y with the initial poini 20 by
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using its arclength u as parameter, 0 � u < u,. Assume that y(u) does not
tend to t3G as u Then there is a sequence of points —, such that

= —' z C. By Theorem 7.1, there is a disc U around z in which any
two points can be joined by a unique shortest curve. Consider the maximal
subarc Yk of y which contains the point and lies in U. There is a point
zne U, n > k, which is not on Y&• Otherwise y would terminate at z, which
contradicts the fact that every geodesic arc in U can be continued to ÔU.
Therefore, the part of y from 2k to is a geodesic which leaves U. On the
other hand, there is a shortest curve and hence a geodesic from ; to ; inside
U. This is in contradiction with Lemma 7.2. 0

With the aid of the above two lemmas, the unique extremality of geodesics
can now be established.

Theorem 7.2. Let S be a Riemann surface and p and q points of S. Then a
geodesic arc from p to q is strictly shorter than any other curve in its homotopy
class.

PROOF. Let Yi and 12 be homotopic curves on S joining p and q. Let z0 be a
point of the universal covering surface D of S over the point p. By Theorem
2.1 (Monodromy theorem), the lifts ofy1 and 12 from z0 terminate at the same
point z over q. Since lifting does not change lengths, 'we may assume that S is
a simply connected domain D in the complex plane.

Let y be a geodesic from z0 to z; by Lemma 7.2, y is unique. Consider an
arbitrary curve y' in D which connects z0 to z. Replaciig subarcs of y' by
locally shortest arcs with the same endpoints does not nake y' longer. We
may thus assume that y' is a_geodesic polygon. Also, it is not difficult to
construct a Jordan domain G, G c D, which is bounded by a geodesic polygon
and which contains y and y'.

Suppose first that y is a straight arc; we may assume that it is horizontal.
Let z1, z2, ..., denote the points of y which lie on a critical vertical arc
with respect to G. We pick an arbitrary point z' of an open interval (z1...1 ,

of y, where i can take any value 1,2,..., n;; = z. By Lemma 7.3, the maximal
vertical arc through z' is a cross-cut of G. It follows that y' intersects P.

Now let z' run through all points of (z1_1, z1). The vertical arcs fi then
sweep out a simply connected domain A1, which is mapped by 1 onto a
vertical parallel strip. If a1 denotes the width of the strip, then the length of

A1 is at least a1, with equality if and only if y' A1 is a single arc parallel
to y. The domains A. are disjoint so that l(y') � = 1(y). Equality can hold
only if l(y' A1) a• for every i. Starting with i = 1, we first deduce that then

A1 = y A1, and continuing the reasoning we conclude that y' = y.

After this, let y be an arbitrary geodesic. Then y is the union of straight
arcs For every we construct the orthogonal strips as before. An
arc orthogonal to does not meet y again; this follows from Lemma 7.2.
Neither can a intersect a orthogonal to Y&. k j. For if it would, we
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would get a simple closed geodesic polygon with two interior angles equal
to it/2, one positive angle at the intersection of and and the other
angles the condition (7.3). This would contradict the inequality
(7.6). Therefore, the strips are disjoint, and since y' goes through every
we conclude as before that 1(y') � 1(y) and that equality can hold only if

0

it follows from Theorem 7.2 that every horizontal arc is uniquely length
minimizing in its homotopy class.

7.5. Existence of Geodesics

If the Riemanu surface S and the are arbitrary, it is not always
possible to connect two given points p and q with a geodesic. A simple
example is the case in which S is a non-convex plane domain and the metric
is euclidean. The existence of geodesics can be shown if the distance between
the lifts of the points p and q to the universal covering surface is smaller than
their distances to the boundary.

In view of our applications, we shall restrict ourselves to the case in which
S is a compact surface. Then every point of the universal covering surface D
has an infinite distance to the boundary of D (Ahlfors [1]).

This is trivially true if D is the complex plane. For then 3D = {co}, and we
know that the q'-metric is euclidean (c1 6.5 and 7.1).

If D is the unit disc, the Dirichiet regions of the covering group of D over
S are relatively compact (Theorem 5.1). Hence, given a point eD, there is an
r0 < 1 such that the disc Iz I covers the Dirichiet region with center at
Pick an r1 such that r0 <1, and let d denote the between the
circles IzI = r0 and = Fhe circle IzI = r1 can be covered by the images
of <r0 upder finitely many cover transformations. The images of the disc
I z I <r1 under these finitely many transformations are contained in a disc
IzI <r2 with r1 <r2 < 1. From the invariance of q-distances under the cov-
ering group we conclude that the distance from to the circle Izi = r2 is � 2d.
A repetition of the argument shows that the distance from to is infinite.

We can now prove the existence of geodesics on compact surfaces.

Theorem 7.3. Let S be a compact Riemann surface and p and q points of S. Then
each homotopy class of curves joining p and q on S contains a unique shortest
(hence geodesic) arc.

PRooF. As in the proof of Theorem 7.2, we may replace S by its universal
covering surface D. Let two points z1 and z2 of D be given. Since the distance
from z1 and z2 to 3D is infinite, we can find a Jordan domain G, G c D, such
that z2 G and that any arc connecting z1 and z2 in D and leaving G
cannot be length minimizing. If a denotes the infimum of the lengths of the
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curves in D which join z1 and z2, we then obtain the same infimum a if we
restrict attention only to curves which lie in G.

Let (y1) be a minimal sequence of curves in 6 from z1 to 22, i.e., a.

Subdivide the parameter interval [0, into n equal parts and take n so
large that the endpoints of the resulting subarcs of y, can be joined by a
unique shortest arc in D. That this is possible follows from Theorem 7.1,
combined with a standard compactness argument. For a subsequence (y1j,
these n + I endpoints converge. By joining the limit points with shortest arcs
in D we obtain a shortest arc y from 21 to 22. Being globally shortest y is also
locally shortest, i.e., a geodesic.

The uniqueness follows from Theorem 7.2. 0

7.6. Deformation of Horizontal Arcs

A horizontal arc of S is shortest in its homotopy class. We shall prove that
this is asymptotically true if the. competing curves are images of under
deformations of S (Teichmüller [1], p. 159).

Lemma 7.4. Let S be a compact Riemann surface, f: S —' S a homeomorphism
homoto pie to the identity, and a horizoNtal arc. Then there is a constant M,
which does not depend on such that

� — 2M.

PROOF. Let h: S x [0, 1] S be a homotopy from the identity mapping to f.
Fix a point peS and denote by the path t Let be the (unique)
geodesic in the homotopy class of If p' is close to p. the difference

—- is majorized by the sum of the distances between p and p' and
f(p) and f(p'). Hence, the function p is continuous. Since S is compact,
it follows that

M = <
peS

Now let p be the initial point and q the terminal point of the horizontal arc
denotes the path t Vq(l t), then is homotopic to By

Theorem 7.2, the geodesic is shortest in its homotopy class. Therefore,

� + 2M,

as we wished to show. 0
On a spiral trajectory we can take as long as we please. If is a part of a

closed trajectory, we may allow to cover itself. i'hus we can always let
and have then � 1.



CHAPTER V

Teichmü!ler Spaces

Introduction to Chapter V

In this chapter we the theory of Teichmüller spaces of Riernann
s:irfaces by utilizing the results in all four preceding chapters.

In section 1 we define the notion o! a quasiconformal mapping between
Riemann surfaces and prove that the existence and uniqueness theorems
for Reltrami equations generalize from the plane to Riemann surfaces. The
complex dilatation turns out to beat — 1, 1)-differential on a surface. The uni-
queness theorem shows that every such differential determines a
conformal structure for the surface.

The Teichmüller space of a Riemann surface is defined in Section 2 as a set
olequivalence classes of quasiconformal mappings. A metric is introduced in
this space in the same manner as in the universal Teichmüller space. The use
of the complex dilatation leads to a characterization of the Teichmüller space
in terms of different conforrwi structures.

In sections 3, 4 and 5 we consider Riemann surfaces which have a half-
plane as a universal covering surface. In section 3, the quasiconformal map-
pings used in the definition of a Teichmüller space are lifted to mappings of
the half-plane onto itself. This gives a clear picture of an arbitrary Teich-
muller space as a subset of the universal space, and makes it possible to
generalize many previous results.

In 111.4 we mapped the universal Teichmuller space homeomorphically
onto an open set in the space of Schwarzian derivatives, in section 4 of this
chapter, we consider restriction of this mapping to the Teichmüller space
of a Riemann surface. The image is then contained in the subspace consisting
of the Schwarzians which are holomorphic quadratic differentials for the
covering group of the half-plane over the "mirror image" of the given surface.
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The unifying link with the earlier results concerning the universal space is
provided by a theorem which says that the image of an arbitrary Teichmüller
space is the inrersection of the image of the universal Teichmüller space with
the space of the quadratic differentials for the covering group. It follows that
the imagç is an open set in the space of quadratic differentials. The distance
from a point of this image to its boundary can be estimated. Using Schwarzian
derivatives, we also obtain simple estimates relating the metric of a Teichmül
ler space and the metric it inherits from the universal space, showing that
these two metrics are topologically equivalent.

The results of section 4 are used in section 5, where a complex analytic
structure is introduced into Teichmüller spaces. Quasiconformally equivalent
Riemann surfaces turn out to have isometrically and biholomorphically
isomorphic Teichmüller spaces.

While sections 2—5 deal with the general theory of Teichmüller spaces, the
remaining sections 6—9 are primarily concerned with Teichmüller spaces of
compact surfaces. Section 6 is devoted to the study of the Teichmüller space
of a torus, which is shown to be isomorphic to the upper half-plane furnished
with the hyperbolic metric.

In section 7 we consider extremal quasiconformal mappings of Riemann
surfaces, which determine the distance in the Teichmüller space, i.e., which
have the smallest maximal dilatation in their homotopy class. A necessary
condition for the extremal complex dilatation is derived in the general case. If
the surface is compact, we can conclude that the extremal is always a Teich-
muller mapping, i.e., its complex dilatation is of the form where
o � k < 1 and is a holomorphic quadratic differential of the surface.

In section 8 we prove Teichmuller's famous theorem that on compact
Riemann surfaces of genus >1, every Teichmüller mapping is a unique cx-
tremal in its homotopy class. In section 9 we show how this result leads to
a mapping of the Teichmüller space of a compact surface onto the open unit
ball in the space of holomorphic quadratic differentials. If the surface is of
genus p (>1), the Teichmüller space is proved to be homeomorphic to the
euclidean space Finally, the connection between the Teichmüller met-
ric and the complex analytic structure is discussed briefly, and some remarks
are made on the Teichmüller spaces of surfaces of finite type.

1. Quasiconformal Mappings of Riemann Surfaces

1.1. Complex Dilatation on Riemann Surfaces

A homeomorphism f between two Riemann surfaces S1 and S2 is called
K-quasiconformal if for any local parameters of an at!as on S1, I = 1, 2, the
mapping h2 ofo is K-quasiconformal in the set where it is defined. The
mapping f is quasiconformal if it is K-quasiconformal for some finite K � 1.
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Suppose that the local parameters h1, k1 of S1 have overlapping domains
U1, V1, and that f(U1 V1) lies in the domains of the local parameters h2,
k2 of S2. Using the notation g = h1 h = k2oh1, we then have in
k1(t11 n V1),

ho(h2ofoh')og.

The mappings h and g are conformal and, therefore, do not change the maxi-
mal dilatation. It follows that K-quasiconformal mappings between Riemann
surfaces are well defined.

Let (0, be a universal covering surface of S1. where D is the unit disc or
the complex plane. (Here and in what follows the trivial case in which D is the
extended plane is excluded.) For the quasiconformal mapping f: S2,

consider all mappings w = h2 where we choose to be a suitable
restriction of Then the complex dilatations of the mappings w define a
function p on 0. Set k1 = o' oh1, where g is an arbitrary cover transforma-
tion of 0 over S1. Then h2 of a kj1 w og. From this and formula (4.4) in
14.2 it føllows that p satisfies the condition

p=(pog) (1.1)

for every cover transformation g. Consequently, a quasiconformal mappingf
of a Riemann surface S1 determines a Beitrami differential for the covering
group G or, what is the same, a Beltrami differential on the surface S1 (cf.
IV. 1.4 and IV.3.6). This differential is called the complex dilatation off.

We can also arrive at the complex dilatation of a quasiconformal mapping
of a Riemann surface in a slightly different manner; namely, by lifting the
given quasiconformal mapping to.a mapping between the universal covering
surfaces. Let (D, it1) be a universal covering surface of i = 1, 2, and 4 the
covering group of D over S,. Consider a lift w: 0 —i 0 of the given quasicon-
formal mapping f: S1 —+ S2. Since the projections it1 and are analytic local
homeomorphisms, w is quasiconformal. Let p be the complex dilatation of w.
Because w o go is conformal for every g e (cf. IV.3.4), the mappings w
and wog have the same complex dilatation. Hence, we again obtain (1.1).
Clearly this p is the complex dilatation of 1.

We assumed that S1 and S2 admit same universal covering surface D.
But if S1 and 52 are quasiconformally equivalent, the same is true of their
universal covering surfaces. Therefore, it is not possible that the universal
covering surface of one of the surfaces is a disc and of the other the complex
plane.

The existence theorem for Beltrami equations (Theorem 1.4.4) can be
generalized to Riemann surfaces.

Theorem 1.1. Let p be a Beltrami dWerential on a Riemann surface S. Then
there is a 4uasiconformal mapping of S onto another Riemann surface with
complex dilatation p. The mapping is uniquely determined up to a conformal
mapping.
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PROOF. We consider p as a Beltrami differential for the covering group G of D
over S. By Theorem 1.4.4, there is a quasiconformal mapping f: D —, D with
complex dilatation ji. Since (1.1) holds, f and fog. have the same complex
dilatation for every p G. Then fog of1 is conformal, and we conclude that
f induces an isomorphism of G onto the Fuchsian group C' {Jo g of' ge
G}. If it and it' denote the canonical projectipns of D onto S and S' = DIG',
then q,o it = it' of defines a quasiconformal mapping q, of S onto S'. This
mapping has the complex dilatation P.

Let cli be another quasiconformal mapping of S with complex dilatatioñ p
and w: D —. D its lift. Then w D D is conformal, and so its projection

04,1 is also conformal. . -

1.2. Conformal Structures

Let p be a Beltrami differential on a Riemann surface S, and h an arbitrary
local parameter on S with domain V. From the existence theorem for Beltra-
mi equations it follows that there is a complex-valued quasiconformal map-
ping w of h( V) with complex dilatation po h'. (For this conclusion we can
use the plane version, Theorem 1.4.4.) Then f = w h is a quasiconformal
mapping of V into the plane with complex dilatation p. 1ff1 and 12 are two.
such mappings with intersecting domains V1 and V2, then by the Uniqueness
theorem (Theorem 1.4.2), 12 ofr1 is conformal in f1(V1 V2). This allows an
important conclusion:

A Beltran*i differential of S defines a conformal structure on S.

If H is the original conformal structure and the structure induced by p,
then is determined by all quasiconformal mappings of open subsets of
(S. H) into the plane whose complex dilatations aie restrictions of p. These
mappings are conformal with respect to the structure fIn.

We can relax the conditions on p slightly and still obtain conformal struc-
tures. In fact, the above reasoning works if p isa (— 1, 1)-differential of S a*id

1
p II < I in every corn pact subset of S.

1.3. Group Isomorphisms Induced by Quasiconformal
Mappings

'Let us now that the universal covering surface D of S is the unit disc.
The lifts of Riemann surfaces need not possess limits at
the However, if the homeomorphism is quasiconformal, then
a lift admits a homeomorphic extension to the boundary. This makes
it rephrase Theorem IV.3.5 in terms of the boundary behavior of
lifted
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Before formulating the theorem, we make a remark on the transformation
of the limit sets of covering groups. Let f: D —' D be a lift of a quasiconformat
mapping of a Riemann surface with the covering group G onto a Riemann
surface with the covering group G'. If z is a fixed point of g G and f(z) =
then (fog of' = f(g(z)) = We conclude that f maps the fixed points
of G onto the fixed points of G'. Since the limit set is the closure of the set of
the fixed points (1V.4.5), it follows that f maps the limit set L of G onto the
limit set L' of G'.

Theorem 1.2. Let S and S' be Riemann surfaces with non-elementary covering
groups G and G', (pt: S —+ S', i = 0, 1, two quasiconforma! mappings, andf0 a lift
of Then and induce the same group isomorphism between G and G'
and only if there is a of coi which agrees withf0 on the limit set of G.

PROOF. Suppose first that there is a lift such thatf1 = .10 on the limit
set L of G. Because f0 and j1 map L onto the limit set L' of G' and because L
is invariant under G, we then have

=f1ogof11, geG, (1.2)

at every point of L'. Both sides are Möbius transformations. Since they are
equal on a set with at least three points, they agree everywhere.

In order to prove the necessity of the condition, we now assume that (1.2)
is true in D. Settingh = of1, we rcwrite(l.2) in the form

goli hog.

If z is a fixed point of some g, then g(h(z)) = h(z), I e., h(z) is also a fixed point
of q. If z is an attractive fixed point and c D, then for the nth iterate of g,

—* z as n —, On the other hand, = -+ h(z). Hence
Ii(z) = z for all fixed points of G. Since these fixed points comprise a dense
subset of L(see IV.4.5), it follows that f0(z) =f1(z) for all z in L. 0

Theorem 1.2. combined with Theorem IV.3.5, plays an important role in
the theory of Teichmüiier spaces. The following special case deserves partic-
ular attention.

Theorem 1.3. Let S be a Riemann surface with a non-elementary covering
group. 1ff: S S is d c'oP!formal mapping homotopic to the identity, then f is
the identity mapping.

By Theorem IV.3.5, f and the identity mapping of S induce the same
group isomorphism of the covering group of D over S. By Theorem 1.2, f has
a lift which is the identity mapping of D. Hence, the projection f itself is the
identity mapping.

S 0
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1.4. Homotopy Modulo the Boundary

For covering groups of the first kind, the existence of homotopy between two
mappings 4)o and q1 is equivalent to the existence of lifts which agree on the
whole boundary of D. in the theory of Teichmüiler spaces this is a very
satisfactory state of affairs. For analogous behavior to occur when covering
groups are of the second kind, which would make it possible to develop a
unified theory, we need a stronger form of homotopy.

Let us consider a Riemann surface S = DIG, where D is the unit disc and
G is of the second kind. We denote by B the non-void complement of the
limit set L of 0 with respect to the unit circle. Then = DIG LI BIG is a
bordered Riemann surface (ci. IV.1.3 and IV.4.5).

if we use the quotient representation DIG for Riemann surfaces under
consideration, an amazingly strong result can be easily proved: A quasiconfor-
ma! mapping 4) of S = DIG onto S' = DIG' can always be extended to a homeo-
morphism of S* onto (S')*.

In order to prove this, we consider a lift f: D -÷ D of qi. We continue f by
reflection to a quasiconformal mapping of the plane. The extended f then
induces the isomorphism g -. fog between G and 0' in the whole plane.
We proved in 1.3 that f maps the set of discontinuity of G onto the set of
discontinuity Q' of 6'.

We assumed that G is of the second kind, in which case G' also is of the
second kind; Extend the canonical projections it: D DIG and it': D —' DIG'
to the domains fI and Cl'. Then

(p*on = it'of

defines a quasiconformal mapping p of the double Cl/G of S onto the double
CZ'/G' of S'. Its restriction to (D B)/G is the desired extension of (p.

Lct S —i S', I =0, 1, be two quasiconformal mappings between the Rie-
mann surfaces S = DIG and S' = DIG'. We just proved that and can be
extended to mappings of onto (5')*. We say that 4)0 is homotopic to
modulo the boundary if = on the border and there is a homotopy from

to qi1 which is constant on the border.

Theorem 1.4. quasiconformal mappings (p,: S —' 5', 1 = 0, 1, are homotopic
modulo the boundary if and only if they can be to mappings of D which
agree on the boundary.

PROOF. Assume first that Qo and 4)i are homotopic modulo the boundary. If
fo is a lift of then the lift 11 of homotopic to 10 through the lifted
homotopy agrees with f0 on the set B. The mappings f0 and 11 determine the
same group isomorphism (Theorem IV.3.5). From the proof of Theorem 1.2
it follows that J0 = f1 on L.

Conversely, ii on the boundary of D, we construct a homotopy f,
fromf0 tof1 as in the proof of Theorem IV.3.5, and conclude again that it can
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be projected to produce a homotopy from to Since J keeps every
point of B fixed, the projected homotopy is constant on the border of S. 0

1.5. Quasiconformal Mappings in Homotopy Classes

Not every sense-preserving homeomorphism between two given Riemann
surfaces is homotopic to a quasiconformal mapping. A trivial counterexam-
pie is the case where one of the surfaces is a disc and the other the complex
plane. These are homeomorphic Riemann surfaces but not quasiconformally
equivalent.

In the case of compact surfaces, the situation is different (Teichmüller [2J).

Theorem 1.5. Let S and S' be compact, topologically equivaleflt Riemann sur-
faces. Then every hoinozopy class of sense-preserving homeomorphisms of S
onto S' contains a quasiconformal mapping.

PRooF. Let f: S S' be a sense-preserving homeomorphism. Since S is com-
pact, it has a finite covering by domains U2, ..., such that Uk is
conformally equivalent to the unit disc and 3Uk is an analytic curve. Set

= .1 and define inductively a sequence of mappings k = 1, 2, ..., n, as
= in S\Uk, while in the mappingfk is the Beurling—Ahifors

extension of the boundary values fk..IIôUk. More precisely, we map Uk and
(Ut) conformally onto the upper half-plane H.. Since Uk and .Ik-1 (Uk) are

Jordan domains, these conformal transformations of Uk and fk_j(Uk) onto H
have homeomorphic extensions to the boundary (see 1.1.2). We normalize the
mappings so that the induced self-mapping w of H keeps fixed. After that,
we form the Beurling—Ahifors extension of in 1.5.3. By transferring
this extension to S we obtain fkl Uk. The Uk is a dilTeomorphism
and hence locally 9uasiconformal. Moreover, if is quasiconformal at a
point z e aUk, then V is quasiconformal for some neighborhood V of
z (cf. [LV], pp. 84—85). Hence, fk is quasiconformal at z, because 311k is a
removable singularity (cf. Lemma 1.6.1). It follows that I,, is a quasiconformal
mapping o• S, since S is compact.

The mapping (p, t) —. tfk(p) + (1 — (p) is a homotopy between
and fk• It follows that 1,, is homotopic to f. 0

Theorem 1.5 is not true for arbitrary Riemann surfaces S and S', not even
in cases in which S and S' each admits a disc as its universal covering surface.

We shall prove later (Theorems 4.5 and 6.3) that if S S' are arbitrary
Riemann surfaces which are quasiconformally equivalent, then every homo-
topy class of quasiconformal mappings of S onto S' contains a real analytic
quasiconformal mapping. This result can be regarded as a generalization of
Theorem 111.1.1.
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2. Definitions of Teichmüller Space

2.1. Riemann Space and Teichmüller Space

We shall now generalize the notion of the universal Tt chmüller space intro-
duced in III.! and define the Teichmüller space for an arbitrary Riemann
surface.

Let us consider all quasiconformal mappings f of a Riemann surface S
onto other Riemann surfaces. If two such mappings f1 and 12 are declared to
be equivalent whenever the Riemann surfaces 11(s) and f2(S) are conformally
equivalent, the collection of equivalence classes forms the Riemann space
of S.

In the classical case where S is a compact Riemaun surface we could
equally well start with homeomorphic mappings of S: by Theorem 1.5, every
homotopy class of homeomorphisms contains quasiconformál mappings.

study of R5 is called Riemann's problem of moduli. In the case where S
is the upper half-plane, the equivalence relation is so weak that all mappings

f are eqtivalent, and so R5 reduces to a single point.
Teichmüller [1] observed that even in the case of a compact surface, a

space simpler than R5 is obtained if we use a stronger equivalence relation. Let
f1 andf2 be quasiconformal mappings of a Riemann surface S. Suppose that
the universal covering surface of S is the extended plane or the complex plane
or a disc with a covering group of the first kind. Then and 12 are said to be
equivalent if 12 ofr' is homotopic to a conformal mapping of f1(S) onto
f2(S). If the universal covering surface of S is a disc and the covering group is
of the second kind, i.e., if S is bordered, "homotopic" in this definition of
equivalence is to be replaced by "homotopic modulo the boundary".

Defirntion. The Teichmüller space of the Riemann surface S is the set of the
equivalence classes of quasiconformal mappings of S.

Teichmflller restricted his interest to compact Riemann surfaces and, a
little more generally, to certain cases in which T5 is finite-dimensional (cf. 9.7).
Ahlfors [1] seems to have been the first to use the name "Teichmüller space",
this in 1953. The above definition applying to all Riemann surfaces is due to
Bers ([7], [8]).

It is not difficult to see that if S = H, then T5 agrees with the universal
Teichmüller space TH. In applying the above T5 to S = H, we
first note that all. quasiconformal images of H are conformally equivalent. It
follows that we may consider without loss of generality only the normalized
quasiconformal self-mappings of H. which we denoted in III.! by f's. By The-
orem 1.4, the condition that fMz be homotopic.modulo the boundary
to a conformal mapping is fulfilled if and only iffu2o(fhulVt agrees with the
identity mapping on the real axis R. Consequently, fe" is equivalent to
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by the above definition if and only if = By the definition in
1111.1, this is the condition and fM2 to determine the same point in the
universal Teichmüller space TN.

A connection is obtained between and the universal Teichmüller spac.
if we lift the mappings between S and other Riemann surfaces to
between the universal covering surfaces. In this way we are able to transfer
many results associated with the universal Teichmüller space to the general
case. This will be done in sections 3-5.

By slightly changing the definition of T5 we arrive at the reduced Teichmüller
space of S. Its points are also equivalence classes of quasiconformal mappings
of S, but now two such mappings f1 and 12 are declared equivalent 1ff2 ofr'
is just homotopic (not necessarily homotopic modulo the boundary) to a
conformal mapping.

The reduced Teichmüller space differs from the Teichmüller space T3 only
If S is bordered. In what follows, we shall not deal with reduced Teichmüller
spaces. For this reason we henceforth use the term "homotopy" to mean
"homotopy modulo the boundary" in the case of bordered surfaces. This
simplifies the language and, if this convention is kept in mind, should not
cause confusion.

2.2. Teichmüller Metric

Exactly as in the case of the universal Teichmüller space, we define the
distance

r(p,q) = (2.1)

between the points p and q of the Teichmüller space T5 (cf. 111.2.1). In the
proof that r defines a metric in the only non-trivial step is again to show
that r(p, q) = 0 implies p q. This can be deduced from the following resulL

Theorem 21. Letf0: S —* S' be a quasiconformal mapping and F the class of all
quasiconformal mappings of S Onto S' homotopic to 10. Then F contains an
extremal mapping, i.e., one with smallest maximal dilatation.

PROOF. Let D be a universal covering surface of S. The theorem is trivial if V
is the extended plane or if D is the complex plane and S is non-compact. In
the case where D is the complex plane and S is compact, the theorem will be
proved in 6.4. Hence, we may assume that D = H is the upper half-plane (cf.
IV.4.l).

By Theorem 1.4, we can lift each fe F to a self-mapping w1 of H such that
all mappings w1 Igree on the real axis. The class W = {w1jf€ F} contains its
quasiconformal Iñnits. Hence, there exists a mapping WE W with smallest
maximal dilatation (cf. 1.5.7). The projection of w is the extremal sought in F.

0
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Given the points p, q E T5, we fix the mappings e p, q, and let F now
be the class of all quasiconformal mappings of f0(S) onto g0(S) homotopic to
g0 Again mimicking what was done in the universal Teich-
muller space (cf. 111.2.1) we conclude that

r(p,q) = (2.2)

In other words, in determining the distance between Two points of T5 we can
always take the inlimum of maximal dilatations in a homó*opy class of
quasiconformal mappings between two fixed Riemann surfaces.

Theorem 2.1 says that the inf in (2.2) can be replaced by mm. Consequently,
if r(p, q) = 0, the class F contains a conformal mapping; and so p = q. After
this, it is that (Ta, r) is a metric space.

The point which is defined by the identity mapping of S is called the origin
of T5. The origin contains all conformal mappings of S.

2.3. Teichmüller Space and Beltrami Differentials

The definition of the Teichmüller space T5 can also be formulated in terms of
the Beltrami differentials on S. Every quasiconformal mapping of S deter-
mines a Beltrami differential on S, namely, its complex dilatation. Conversely,
if p is a Beltrami differential of S, then by Theorem 1.1 there is a quasicon-
formal mapping of S whose complex dilatation is p. and by the uniqueness
part of Theorem 1.1, all such mappitigs determine the same point of 1's. Two
Beltrami differentials are said to be equivalent if the corresponding quasicon-
formal mappings are equivalent. Hence, a point of can be thought of as a
set of equivalent Beltrami differentials. The Teichmüller distance (2.1) can be
expressed in terms of Beltrami differentials:

r(p,q) = ÷ 11(P I (2.3)

Let S admit the half-plane as its universal covering surface. Then geodesics
in T5 allow same description as in the universal TeichmUller space (see
Theorem 111.2.2): If p is an extremal dilatation for the point p E T5,

then

(1 + I IY—(' — I IY

(1 + — LIYIPI'
0 � t � 1, (2.4)

is ext remal for the point p1 = The arc t —* p and
t(p,,O) = tr(p,0).

By using Theorem 3.1, to be established iu subsection 3.1, we can merely
repeat the proof of Theorem 111.2.2. We only have to make the additional
verification that p, represents a point of Since p represents a point of T5,
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it is a Beltrami differential for the covering group G of the universal covering
surface over S, i.e., (p o g)g'/g' = p for every g G. From (2.4) we see immedi-
ately that p1 also this condition. Hence [pj is a point of

The following generalization of Theorem 111.2.1 is immediate.

Theorem 2.2. The Teichmüller space is pathwise connected.

PROOF. The geodesic t -+ [p3 is a path joining the origin to the point p in T5;
the path r —, [tt) of T5 also has this property. - 0

2.4. Teichmüller Space and ConformaiStructures

Let S be a Riemann surface with the conformal structure H and {h} an atlas
of local parameters belongingto H. 1ff is a homeomorphism of S onto itself,
then {h of -1 } is an atlas which determines another conformal structure of S.
We denote this structure by and note that does not depend on
the particular choice of the atlas on H,

It follows from the definition that f: (S, H) —' is a conformal map..
ping. Conversely, if H and H' are conformal structures of S and f: (5, H)
(S, H') is conformal, then H' =

We say that two conformal structures H and H' of S are deformation equiva-
lent If can be deformed conformally to H', i.e., if there is a ëonformal map-
ping of (5, H) onto (S, H') which is homotopic to the identity.

In 1.2 we showed that every Beltrami differential p on the Riemann surface
(5, H) defines a new conformal structure Given two conformal struc-
tures H and H' of S. suppose that there exists a quasiconformal mapping
f: (S, H) (5, H'). Let p denote the complex dilatation of f. Then

H' = . (2.5)

This follows directly from the definitions, because now f: (S, -+ (S, H') is
conformal.

There is a simple connection between different Structures and points of
the Teichmüller space of S.

Theorem 2.3. The conformal structures H1 and H2 induced by the Beltrami
dWerentials and #2 on the Riemaun surface S are deforma'ion equivalent
and only (I ILk and #2 determine the same point in the Teichmüller space T5.

PROOF. Let I = 1, 2, be quasiconformal mappings of S with complex
dilatations If q: is a conformal mapping homotopic to
the identity, we first conclude that the mapping
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is conformal. AlsO, we see that 12 is homotopic to h. It follows that
and are equivalent.

Conversely, if Pi and P2 are equivalent, there is a conformal map h:f1 (5) —'
12(S) such that p = fj' oh of1: S S is homotopic to the identity. In addi-
tion, (S, H1) -. (S. H2) is conformal, and so H1 is equivalent to H2. 0

We conclude that the Teichmüller space can be characterized as the set of
equivalence classes of conformal structures H,, on S modulo deformation. Note
that a conformal structure H' on S is of the form H,, if and only if id: (S, H) -.
(S, H') is quasiconformal.

2.5. Conformal Structures on a Compact Surface

In considering different conformal structures on a swface S, we assume here
that for any two structures H and H', the identity mapping of (S, H) onto
(S; H') is sense-preserving. above results can then be supplemented ifS is
a compact surface.

Theorem 2.4. On a compact Riemann surface S, every conformal structure is
deformation equivalent to a structure induced by a Beltrami of S.

PRoOF. Let H be the given and H' an arbitrary conformal structure on S. By
Theorem 1.5, there is a quasiconformal mapping f: (S, H) -+ (S, H') which is
homotopic to the identity. Let f have the complex dilatation Then H' =
fjH_) (formula (2.5)). But f: (S, H,,) —' (S,f,,(H,,)) is a conformal mapping
homotopic to the identity. Consequently, H' = is deformation equiva-
lent to H,,. 0

Theorems 2.3 and 2.4 yield an important characterization of Tç.

Theorem 2.5. The Teichmüller space of a compact Riemann surface is isonwr-
phic to the set equivalence classes of conformal structures modulo deforma-
tion.

This result can also be expressed in somówhat different terms. Let
denote the set of all conformal structures of S. The group consist-
ing of all sense-preserving homeomorphic self-mappings of S acts on If
HE .r(S) and fe (S), then (H) e

Let Homeo0(S) be the subgroup of Homeo'(S) whose mappings are homo-
topic to the identity. Then H, H' e .*'(S) are deformation equivalent if and
only jf there is an fe Homeo0(S) such that = H'. It follows, therefore,
that for a compact surface S we have the isomorphism

.it°(S)/Homeo0(S).
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In section 8 we shall prove that every class of equivalent complex dilata-
tions contains a unique dilatation of the form where 0 � k < I and
is a holomorphic quadratic differential of S. It thus follows from Theorems
2.4 and 2.5 that every conformal structure of a compact Riemann surface is
deformation equivalent to a structure induced by a Beltrami differential

Since q is uniquely determined up to a multiplicative positive con-
stant (except of course for the case k = 0), we see that there is a simple
relationship between the normalized quadratic differentials and the equiva-
lence classes of conformal structures on S.

The role of holomorphic quadratic differentials in the Teichmüller theory
of compact Riemann surfaces will be studied in more detail in sections 7—9.

2.6. Isomorphisms of Teicbmiiller Spaces

In 111.5.2 we proved that the universal Teichmüller spaces associated with
different quasidiscs are all isomorphic. Again, it is a trivial consequence of the
definition that we have a counferpart of this result in the general case.

Theorem 2.6. The Teichmüller spaces of two quasiconformally equivalent
Riemann surfaces are isometrically bijective.

PRooF. Let S and 5' be Riemann surfaces and h a quasiconformal mapping
of S onto S'. The mapping f is a bijection of the family of all
quasiconformal mappings f of S onto the family of all quasiconformal map-
pings of S'. If = f, o h', we have w2 o w1 = f2 of1'. We first conclude that
f1 and f2 determine the same point of if and only if w1 and w2 determine
the same point in Ti', i.e.,

{f) {foh1] (2.6)

is a bijective mapping of T5 onto T5.. It also follows that (2.6) is an isometry,
i.e., it leaves all Teichmuller distances invariant. 0

Under (2.6) the point {h] of is mapped to the origin of T5. We shall later
utilize this simple method of moving an arbitrary point of one Teichmüller
space to the origin of another isometric Teichmüller space.

If S and S' are compact Riemann surfaces of the same genus, they are
homeomorphic (IV.5.2). By Theorem 1.5, they are also quasiconformally
equivalent. We conclude from Theorem 2.6 that all Teichinüller spaces of
compact surfaces of the same genus are isomorphic.

In sections 5 and 6 we shall introduce complex analytic structure in Teich-
muller spaces. We can then enhance Theorem 2.6 and prove that the Teich-
muller spaces of quasiconforrnally equivalent Riemann surfaces are even
biholomorphically isomorphic.
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2.7. Modular Group

Let h be a quasiconformal self-mapping of S. Then (2.6) defines bijective
isometry of onto itself. The group Mod(S) of all such isomorphisms [f]
[Jo h'] of T5 is called the modular group of Th.

IfS = H, in which case T3 is the universal Teichmüllcr space, Mod(S) is the
universal modular group introduced in 111.1.2.

The modular group Mod(S) is also a generalization of the classical modular
group F of Möbius transformations acting on the upper half-plane If, in the
following sense: IfS is a torus, the Teichmüller space can be identified with
H and the group Mod(S) with r'. This will be explained in 6.7.

In section 5 we shall prove that even in the general case, the elements of the
modular group are biholomorphic self-mappings of T5.

Let Qc(S) be the group of all quasiconformal self-mappings of S and Qc0(S)
the normal subgroup of Qc(S) whose mappings are homotopic to the identity.
We associate with every h Qc(S) the element [f] —+ jf a h1 3 of Mod(S).
This rule defines a mapping of the quotient group Qc(S)/Qc0(S) into Mod(S).
In fact, if oh1eQc0(S), then = Clearly, this mapping
of Qc(S)/Qc0(S) into Mod(S) is surjective and a group homomorphism. We
remark that the mapping is injective if S admits no conformal self-mappings
other than the identity transformation. It follows that in this case the modular
group Mod(S) is isomorphic with the quotient group Qc(S)/Qc0(S). This is
also true of all Riemann surfaces quasiconformally equivalent to such an S.

The following result illustrates the homotopy condition which makes R5 a
quotient space of

Theorem 2.7. The Riemann space is the quotient of the Teichmüller space by the
modular group.

PROOF. Assume first that the points ff3 and fgj of are equivalent under
Mod(S). We then have a quasiconformal mapping h: S S such that Jo h'
is equivalent to g. But this means that there is a conformal mapping of f(S)
onto q(S), i.e., f g determine the same point of R5.

Conversely, let f and g represent the same point of R5. Then a conformal
mapping q,:f(S) —, g(S) exists, and h = o of is a quasiconforinal self-
mapping of S. From g = qo(foh1) we see that g and foh1 determine the
same point of D

Theorem 2.7 says that two points [f1] and [12] of the Teichmüller space
T5 are equivalent under Mod(S) if and only if the Riemann surfaces f1 (5) and
f2(S) are conformally equivalent. In other words, the modular group is transi-
tive if and only if the Riemann space R5 reduces to a singleton. This occurs
only in the exceptional cases where quasiconformal equivalence of Riemann
surfaces implies their conformal equivalence. The universal Teichmuller space
(S = H) is such an exception.
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Not only the Riemann space but even the Teichmüller space may reduce
to a single point. This occurs if S is a sphere (a compact surface of genus zero)
or a sphere from which 1, 2 or 3 points are removed. All quasiconformal
images of S are then conformally equivalent; this can be seen if Theorem 1.4.4
is combined with the fact that three points of the extended plane can be
moved to arbitrary positions by a Möbius transformation. After this we
conclude that every point of T5 contains a conformal mapping, i.e., that T5 is
a singleton. If S is the sphere minus three points, S has the disc as a universal
covering surface (cf. IV.4.1), and the covering group is of the first kind.

3. Teichmüller Space and Lifted Mappings

3.1. Equivalent Beltrami Differentials

For a Riemann surface S, we defined the Teichmüfler space T5 by means of
quasiconlormal mappings of S onto Riemann surfaces. Lifting these mappings
to mappings between the universal covering surfaces leads to new character-
izations of T5 and makes it possible to see better the connection between the
general space and the universal Teichmüller space.

We impose on the Riemann surface S the sole restriction that it has a
half-plane as its universal covering surface. Since we try to follow as closely
as possible the reasoning in 111.1 and 111.2 in the case of the universal
Teichmüller space, we take here the lower half-plane H' as the universal
covering surface of S. The cases in which the universal covering surface of S
is the complex plane will be discussed in section 6.

Given a Riemann surface S, we consider a Beltrami differential p on S or,
what is the same, a function p defined in H' which is a Beltrami differential
for the covering group of H' over S. As before, we denote by I " the uniquely
determined quasiconformal self-mapping of H' which has the complex dilata-
tion p and which keeps fixed the points 0, I and on the real axis R, and by
.i the quasiconformal mapping of the plane which has the complex dilatation
p in H', is conformal in the upper half-plane H and fixes the points 0, 1 and

Theorem 111.1.2 has an exact counterpart:

Theorem 3.1. The Belt rami d ifferenrials p and v of S are equivalent ([and only
= fiR or if and only =

PROOF. Let us first assume that p and v are equivalent. Let q, and be
quasiconformal mappings of S which lift to fP and ft', respectively. Then
there is a conformal map q: p(S) -+ such that oq is homotopic to i/i. By
Theorem 1.4, we have f" = h of" on the real axis R, where I:, as a lift of is
a Möbius transformation. Since and [ both lix 0, 1, co, it follows that h
is the identity.
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Suppose, conversely, that f' f'
the same isomorphism of the covering group of H' over S onto a

Fuchsian group G'. The projections of fM and f' map S onto the same
Riemann surface H'/G', and by Theorem 1.4, these projections are homoto-
plc. It follows that and v are equivalent.

After this we can show that = if and only if = by
repeating the proof of Theorem 111.1.2 verbatim. 0

3.2. Teichmüller Space as a Subset of the Universal Space

Theorem 3.1 says that

and

are well defined injective mappings of the Teichmüller space. In particular, T5
can be characterized as the set of equivalence classes two mappings
being equivalent if they agree on k. We have thus arrived at the situation
which was our starting point in 111.1 when we defined the universal Teich-
muller space. In the general case the complex dilatations of the mappings
are Beltrami differentials for the covering group G. If G is triyial, then is
the universal Teichmülier space T (cf. also the remarks in 2.1).

This characterization of that the family of Teichmüller spaces
admits a partial ordering Let S1 and be Riemann surfaces and G1 and G2
the covering groups of H' over S1 and S2. If is a subgroup of G2, then

In particular, every Teichmüller space T5 can be regarded as a subset
of the universal Teichmüller space T

Let r and r5 denote the Teichmüller metrcs in the spaces Tand 1's. Then
the restriction nT5 is also a metric in 7's. From the definitions of r and r5 it
follows immediately that

(3.1)

It was for many years an open question whether the metrics VS and ri
actually agree. We now know that T5 not inherit its metric from the
univerEal Teichmüller space: The metrics and r T5 need not be the same.

This was proved by Strebel [4] who gave two examples of surfaces S for
which r is strictly less than In one case S is a punctured torus, in the
othcr a compact surface of genus 2; cf. also 3.7 and 7.6.

Even though (3.1)does not always hold as an equality, the metrics tJ T5 and
are topologically equivalent. In other words, the inclusion t5) (T, r)

is a homeomorphism onto its image. This will be proved in 4.6..

3.3. of Teichmüller Spaces

Lemma ñL22 is true in Teichmüllcr space T5:
A Cauchy sequence in (T5, a subsequence whose points

have representatives p, such that Jim = exists almost everywhere,
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[f,j in the rrmetric, f,,(z) uniformly itt the spherical metric,
and —' f"(z) locally uniformly in H' in the euclidean metric.

The proof is word for word the same as in Lemma 111.2.2. In this case every
p,, is a Beltrami differential for G, i.e., (p,t o g)g'/g' = p.,. From p,t(Z) -+ p(z)
ahnost everywhere it follows that the limit p also is a differential for
G, i.e., [p3 is a point of

From this observation we obtain a generalization of iheorem 111.2.3.

Theorem 3.2. The Teichmüller space (T5, t5) is complete.

For an application in section 9 we need the following result.

Lemma 3.1. Let [p,j [p3 in � k < 1, and p,t —, v a.e. Then [p3 =
[v]in T5.

PROOF. Let .%,tE [p,t] be an extremal complex dilatation for which r5([p,t3,
[p3) artanhfl(2,t — p)/(l — (formula (2.3)).' The hypothesis [p,t]
[p3 then implies that A,, —. p in By Theorem 1.4.6, f,,,,, f,, and -+
Since = JJH it follows that H = f,IH, and so [p3 [vJ. 0

3.4. Quasi-Fuchsian Groups

The mappings lead to discontinuoufr groups of
with an invariant domain different from a disc.

Theorem 3.3. The mapping g ./, o g defInes an isomorphism of the cover-
ing group G onto a group of Mobius transfornuitions acting on the quasidisc

PROOF. Consider the quaaiconformal mapping G, of the plane.
It is conformal in f,(H)1 because is conformal. Since p is a Beltrami,
differential for G, the mappings and o g have the same complex
tion. It follows that o g is conformal in also. The common
boundary of f(H) and fM(H'), being the image of the real axis under fM' is a
quasicircie. We conclude, therefore, from Lemma 1.6.1 that o go is a
Möbius transformation. 0

By the terminology we adopted in IV.4.6, the group

GM =

is quasi-Fuchsian. A quasi-Fuchsian group of this special type is called a
quasiconfonnal deforipation of the Fuchsian group G. Such groups were
discovered by Bers (4].

The invariant domain is a half-plane if and only if p is a trivial
complex dilatation, i.e., p is equivalent to the complex dilatation whióh is
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identically zero. If G is of the first kind, the limit set of G,, is the whole
boundary of By Theorem 1V.4.2, only two strikingly different cases are
then possible: Either the boundary is a straight line or else it is a quasicircle
which fails to have a tangent at each point of a set dense in the curve.

Not all simply connected invariant domains of properly discontinuous
groups of Möbius transformations are necessarily quasidiscs. A simple ex-
ample is obtained if we consider a countable set of circles, all of diameter 1,
of which one has the center at 0 and the others at the points ± I + ,i, n 0, 1,
2 The method of Klein. which we described at the end of JV.4.6, applied
to this family of circles yields an invariant Jordan domain whose boundary
has a cusp at the origin. Thus the boundary curve violates the condition
(6.1 1) of Theorem 1.6.7 at the origin (z2 = 0, and z3 -+ 0) and cannot be a
quasicircie (Fig. 13).

There can even be invariant domains whose boundary has positive area
(Abikoff [1]). In 4.3 we shall exhibit a general (albeit implicit) method
producing invariant domains which are not quasidiscs.

A point [it] uniquely determines the domains A,, = f,,(H) and
Like the universal Teichmüller space, can be regarded as a collec-

tion of the quasidiscs AM (ci. 111.1.5). In 111.4 we defined a distance between
two such domains by using Schwarzian derivatives. The relation of this
distance to the Teichmüller distance will be studied in section 4.

3.5. Quasiconformal Reflections Compatible with a Group

The point [js] = p€ determines uniquely the quasicircie We show
here that fM(R) admits always quasiconformal reflections which are compati-
ble with the group G.

Li order to make this statement more precise, we choose a /LEP and
consider the mapping

Figure 13. Invariant domain which is not a quasidisc.
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(3.2)

as before j denotes the reflection z This mapping is a quasiconformal
reflection in

By Theorem 3.3, the mapping j induces an isomorphism of the group 6
acting on H' onto the quasi-Fuchsian group G,, = acting
on But since the elements of G and are restrictions of Möbius trans-
formations, we may consider g and = in H and A, also. If

= then

= = =

We conclude that the sense-reversing quasiconformal mappings 2 and
o have the same complex dilatation. Therefore, if K, = denotes this

complex dilatation, then

(K) = (3.3)

for every e G,1. in other worth, the complex conjugate of the co,nplex dilata-
tion of 2 is a Béhrami differential for the quasi-F uchsian group

Conversely, we prove that if 2 is a quasiconformal reflection in whose
complex dilatation satisfies the relation (3.3), then 2 is the form (3.2) (cf.
Lemma 1.6.2). Set I in the closure of H, and I = in H'. Then f is
a quasiconformal mapping in the plane which is conformal in H. For G,
we have in

f =

2 of is a con-
formal self-mapping of Since fog of —1 = in it follows
that J og of ' = everywhere. We see that f is a mapping equivalent to
f,4, and so A. = fojof1 is of the form (3.2).

The point [u] e determines the conformal mapping f,41H uniquely, but
not and hence not 2. In 4.8 we shall that for each G and [p1, there
are Lipschitz-continuous reflections (3.2). We also remark that by Theorem
4.5 (to be proved in section 4), there are reflections A which are real-analytic
in i.hc complement of

3.6. Quasisymmetric Functions Compatible with a Group

The mapping fP induces an isomorphism of the group 6 onto the Fuchsian
group

G't=

In particular, agrees with the restriction to R of a
Möbius transformauon.

Let us consider again the space X of normalized quasisymmetric functions,
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which we defined in 111.1.1 and studied in 111.3. We relate X to the group G
as follows: X(G) is the subset of X for whose functions h the composition.
hog a h' is the restriction to of a Mëbius transformation for every g G.

We let X(G) Mherit the metric of X, distance in X(G) is the restriction
to X(G) of the distance function p on X. Then (X(G),p) is a metric space, and
if G is trivial we get back our previous space (X, p).

Theorem 111.3.1 states that
the universal Teichmüller space onto X. In order to generalize this the-

orem to and X(G), we need the following result.

Theorem 3.4. Every quasisymmetric functibn he X(G) has a quasiconformal
extensionf to the half-plane, such that the mapping fog of is conformal for
every geG.

The confonnal mapping fog of -' is of course the restriction to the half-
plane of the Möbiustransformation which agrees with hog o on the real
axis.

Theorem 3.4 is a deep result which has been established in steps. First, let
G be the covering group of a compact surface. Then Theorem 3.4 follows if
the classical result that he X(G) can be extended to a homeomorphic self-
mapping of the half-plane compatible with G is combined with Theorem 1.5.
Kra [1] generalized this result by proving Theorem 3.4 for all finitely gener-
ated groups 6. The author showed that Theorem 3.4 holds for all groups
provided the quasisymmetry constant of h does not exceed

In full Theorem 3.4 is due to Tukia [1]. Tukia's proof is so long
that to includcit here would unbalance our presentation. For this reason, we
content ourselves with a reference to Tukia's paper.

Quite recently, the a forthcoming paper by Douady
and Earle [1] which another proof of Theorem 3.4. This proof is
more explicit than thitof'I'Ukia. It is possible'to verify that, like the Beurling—
Ahlfors extension, the DcMady—Earle extension possesses the following three
properties: 10 It is a diffboniorphism. 2° It is Lipschitz-continuous in the
hyperbolic metdcóf 3° Its maximal dilatation has a bound
which depends only o&tb.c quasisymmetry constant of the boundary function.

Thanks to these thttc properties, the Douady—Earle extension can be used
in applications Instead of the Beurling—Ahifors extension. The additional
property of the extension of being compatible with the group
action leads to impOrtal3t new results. The proof of the contractibility of the
universal Teichrnüller in 11L3.2 was based on the use of the Beurling—
Ahifors extension. Application of the Douady—Earle extension in its place
makes it possible to solve a long outstanding problem (Douady—Earle til):

Every is contractible.

In section 4 we shall see that Theorem 3.4, no matter how it is proved,
reveals remarkable properties of Teichmüller space. Whenever possible, how-
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ever, we shall establish such results by other methods, so as to render the
proofs self-contained.

Using Theorem 3.4 we can now generalize Theorem 111.3.1.

Tbeorem 3.5. The mapping

(3.4)

is a homeomorphism of (T5, t5) OfltO (X(G), P).

PROOF. By Theorem 3.1, the mapping is well defined and injective. By
Theorem 3.4, it is surjective.

By Theorem 111.3.1, the mapping (3.4) is a homeomorphism of (T, onto
(X,p). Hence (3.4), which maps bijectively onto X(G), is a homeomorphism
of (T3, r) onto (X(G), p). From � we thus conclude that (3.4) is a
continuous mapping of (T5, r5) onto (X(G), p). The proof would be complete
if we had an inequality in the opposite direction between ri T5 and t5, to
demonstrate that these two metrics are topologically equivalent. Such an
inequality can be derived, for instance, by means of the right-hand inequality
(5.10) in 1.5.7. We content ourselves here with this remark, because we shall
study the relationships between t and in detail in the next section
(Theorem 4.7). 0

We remarked in 3.4 that if G is of the first kind, is either a straight line
or a far from smooth quasicircie. For the corresponding quasisymmetric
functions fiR there is also a remarkable dichotomy. Suppose that G is a
finitely generated covering group of the first kind (e.g., the covering group of
a compact surface of genus > 1). If p is a trivial complex dilatation, then R
is the identity mapping. In all other cases is a singular function (Mos-
tow [1), Kuusalo [1]). The result holds for some more general groups G as
well, but it remains an open question whether it is true for all covering groups
of the first kind.

3.7. Unique Extremality and Tekhmüller Metrics

Let Fh be the class of all quasiconfonnal of the upper half-
plane which agme with the quasisyinrnetric furnition h on the real axis. This
class was introduced in 1.5.7, where we noted that Fk alwayscontains an
extremal mapping with the smallest maximal dilatation in With the help
of an example, it was shown that the extrernal inot necessarily unique.

Let us now make the additional assumption that hE X(G) for a Fuchsian
group G, i.e., that

hogoh1 = 9(g)1R, (3.5)

where 8(g) is a Möbius transformation. We deflote by the subclass of
whose functions I satisfy the condition fogo.f' = By Theorem 3.4,
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the class is not empty, and again it contains an extremal mapping (cf.
2.2). If f1 and 12 are extremals in Fb and Fh(G), respectively, with complex
dilatations p, and maximal I = 1, 2, then

r(O,[p1]) = z5(O,[p2]) (3.6)

The following observation establishes a connection between the extremals
in Fh and Fh(G). Along with the mapping O(g)of1 og' is also extremal in
Fh. This can be verified immediately, in view of (3.5). Hence, if the extremal in
Fh is unique, it follows that

Ii ogof11 = O(g)IJf, (3.7)

i.e., that Fh(G). Consequently, in this case wc see directly that is not
empty, without resorting to Theorem 3.4. Of course, is extremal in
and by (3.6), we have r(O,[p1]) = r5(O,[pl]).

We pointed out in 3.2 that there are cases in which [p])> r(O, [p1). It
follows that whenever this occurs, the class Fk contains more than one extre-
mal for h = lift

4. Teichmüller Space and Schwarzian Derivatives

4.1. Schwarzian Derivatives and Quadratic Differentials

Again let S be a Riemann surface and G the covering up of H' over S. If p
denotes a Beltrami differential for G, then by Theorem 3.1, the Teichrnüller
space T5 can be characterized as the set of conformal mappings H. Let us
now form the Schwarzian derivative of By Theorem 3.3, the mapping

o go is a Möbius transformation for every g e G. It follows that

= S(f,ogof;1)of,JH = = (4.1)

We see that the Schwarzian derivative of S111, is a quadratic
(ía! for the group G acting on H. Its projection is a holomorphic quadratic
differential on the mirror image of the surface S. i.e., on H/G.

What we can actually deduce from (4.1) by reading it from left to right and
from right to left is the following result: Let f be'a conformal mapping of the
upper half-plane H. Then S1 is a quadratic differential for the group G if and
only iffo g of 1 agrees with a Möbius transformation in f(H) for every g e G.

Assume, in addition, that f is a mapping with 7 We then have a
third condition equivalent to the above two. For convenience of later refe-
rence we express all these conditions in a lemma.

Lemma 4.1. The following three conditions are equivalent:

10 Sf R is a quadratic differential for G;
20 o g agrees with a Möbius transformation g e
30 f11090(fP)l agrees with a Möbius transformation on Flfor g.€G.
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PROOF. As we already remarked, the equivalence of 1° and 2° follows directly
from (4.1). If 2° holds, i.e., if = w in where w is a Möbius
transformation, then h = H' — H' is a Möbius trans-
formation which coincides with o go (f")1 on R. Hence 3° follows from 2°.

Conversely, assume that 3° holds, i.e., that = h on where
It is a Möbius transformation. Set w = oh
of in the

and w is a Möbius transforma-
tion, and so 2° follows from 3°. 0

4.2. Spaces of Quadratic Differentials

Following the procedure in 111.4, we now introduce the counterpart of the
space Q. In what follows we regard G as acting in the upper half-plane II.

Let Q(G) be the space consisting of all functions qi holomorphic in the
upper half-plane H which are quadratic differentials for G and have a finite
hyperbolic sup norm:

h'II = <
zeN

z = x + iy. Like the space Q defined in 111.4.1, the space Q(G) has a natural
linear structure over the complex numbers.

The non-euclidean line element JdzI/(2y) is invariant under all conformal
self-mappings of H. It follows that, when e Q(G), y2 I is invariant under
0. In the definition of the norm, we can therefore replace H by an arbitrary
Dirichiet region N c H of G:

= (4.2)
ZEN

IfS is a compact surface, the closure of N lies in H. In this case it follows from
(4.2) that aU holomorphic quadratic differentials for G have finite norm.

If isa subgroup of G2, we have the inclusion Q(02) Q(G1). In particu-
lar, all spaces Q(G) are subsets of the Banach space Q which corresponds to
the trivial group. From now on we write Q Q(l). Note that all spaces Q(G)
inherit a metric from Q(1); in 111.4 we introduced the notation q for this
dista1ice function.

Every Q(G) is a closed subspace of Q(l) and hence a Banach space. For
consider functions qx, e Q(G) which converge to q in Q(l). Given a g eG, we
then have q,(g(z)), uniformly on every compact subset
of H. It follows that = lim = tim ço(z). Con-
sequently, p e Q(G).

4.3. Schwarzian Derivatives of Univalent Functions

All points of Q(l), and hence of Q(G), are Schwarzian derivatives of functions
f meromorphic and locally injective in H. Let us consider the set

U(G) {q = S1EQ(G)If univalent in H}.
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Between U(G) and U = U(1) we have the simple relation

We just saw that Q(G) is closed in Q(1). In 111.4.4 we proved that U(1) is
closed in Q(1). It follows that U(G) is a closed subset of Q(1).

Since S1 H � 6 whenever f is univalent, the remark in 4.1 preceding
Lemma 4.1 yields another characterization of U(G):

The set U(G) consists of the Schwarzian derivatives of those functions f
univalent in H for which agrees with a Möbius transformation in
f(H) for every g e G. In other words, every f with S1 U(G) induces an
isomorphism of the group G QfltO the group G1 = {fogof1lgeG} of Mo-
bius transformations acting on the domain f(H).

Let T(G) be the subset of U(G) consisting of the Schwarzian derivatives
S1 U (G) of functions f which admit a quasiconformal extension to plane
with a complex dilatation that is a Beltrami differential for G. The set T(G) is
the image of the Teichmülier space T5 under the mapping

—* S1 IH (4.3)

This is clear: the normalization of the mappings which fix 0, 1 and
is unessential when we are considering Schwarzian derivatives.

In 111.4 we proved that (4.3) is a homeomorphism of the universal Teich-
muller space (T,r) onto its image T(1) in (Q(1),q), and that T(l) is an open
subset of Q(1). We shall now start proving a sequence of theorems which, in
combination, assert thatthe restriction of(4.3) to T5 maps(T5,r5) homeomor-
phicalty onto T(G) and that T(G) is an open subset of Q(G). From ti T5 �
we conclude immediately that (4.3) maps (T5, continuously into Q(G).

Let us briefly return to the MObius groups G1 induced by functions I with
S1€ U(G). If U(G)\T(G), then the G1-invariant domain f(H) is not a qua-
sidisc. This follows from relation (4.4), which we shall establish ifl the next
subsection. The groups G1 with Sf lying on the boundary of T(G) are of
partic.ular interest and have been studied extensively by Maskit [1], AbikofT
[3], and others. (It is not known whether the inclusion c (J(G)\T(G) is
proper in cases where G is not trivial; ci. 111.4.6.)

4.4. Connection between Teichmüller Spaces and the
Universal Space

For the sets T(G) we have the natural inclusion T(G2) T(G1) if G1 is a
subgroup of 62. Hence, all sets T(G) are subsets of T( 1).

The following fundamental result connects an arbitrary Teichmüller space
in a simple manner with the universal Teichmülier space.

'Theorem 4.1. The Teichmüller spaces satisfy the relation

T(G) = Q(G) T(1). (4.4).
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PROOF. The inclusion T(G) Q(G) T(1) follows directly from the defini-
tioris. We choose an arbitrary point S1 e Q(G) T(1) and prove that S, e T(G).

Let w be a conformal mapping of the lower half-plane H' onto the com-
plement of the closure of f(H), normalized so that (1(00)) Since
S1e T(l), the boundary of f(H) is a quasicircie. Hence, the function
h = of, defined on the real axis, is quasisymmetric; we may that
h is normalized. Furthermore, for g e

(4.5)

Since S1e U(G), the mapping Jo go agrees with a Möbius
g1 in f(H). Then ow, which maps H' onto itself, agrees with a Möbius
transformation 92 in H'. It follows from (4.5) that h induces an isomorphism
of G onto the group {g2lge G) of Möbius transformations acting on H'. In
other words he X(G).

Next we utilize Theorem 3.4. It follows that there is a quasiconformal
extension q of h to the lower half-plane which also fulfills the condition
coo = g2 o for every g e G. Then f1 w o is a quasiconformal extension
of f to the lower half. ,lane. For g E G we have

f1og = = g1 owoco g1 of1.

This shows that f1 090 agrees with a Möbius transformation in (H'),
and it follows that S1e T(G). D

In the sixties, Bers posed the problem whether (4.4) is true. The above
proof is due to Lebto [2] who proved the conditional result that (4.4) holds
if and only iT Theorem 3.4 is true. After Theorem 3.4 was established, the
relation (4.4) thus followed immediately.

Theorem 4.1 allows important conclusions:

Theorem 4.2. The set T(G) is closed in T( 1).

PROOF. The relation (4.4) is equivalent tc T(G) U(G) ri T(1). Since U(G) is
closed in Q(1), the theorem follows. 0
Theorem 4.3. The set T(G) is open in Q(G).

PROOF. This can be read from (4.4),since T(l) is open in Q(1).

Theorems 4.2 and 4.3 can be proved more directly, withobt the use of the
relation (4.4). Such alternate proofs will be given in subsections 4.6 and 4.7.
Bers [8] was the first to prove that T(G) is open; see also Earle [1].

Remark. Let S be the extended plane punctured at thrce points. Then S has
the half-plane as its universal covering surface. We noted in 2.7 that the
Teichmüller space of S reduces to a single point. Consequently, T(G) consists
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of zero only. Since T(G) is an open subset of the linear space Q(G), we deduce
via'the Teichmüiler theory that in..shis case, Q(G) does not contain points
other than the origin

e

4.5. Distance to the Boundary

By Theorem 4.3, the mapping (4.3) carries a neighborhood of the origin of T5
onto a ball of Q(G) centered at the orign, but we can say more.

Theorem 4.4. The ball

B(0,2) = <2)

lies in T(G).

PROOF. In 111.4.3 we remarked that (g' e Q( 1)111 <2} lies in T(1) (Theorem
11.5.1). Hence, the theorem follows immediately from (4.4). 0

There is another more direct way to show that B(0, 2) is contained in
T(G). Let cp e B(0, 2) and set = — 2y2 Since p(g(z))g'(z)2 = q4z) and

= Ig'(z)VImg(z), we see that p is a Beltrami differential for G. Hence
[p3 e T5. From what was said in 111.4.3 we know that the mapping

(4.6)

is the inverse of [p3 —' = S1
I
H in B(0, 2).

Since � 6fl([p],0) (formula (111.4.1)), we conclude that the ball

{[pJeTsIP('pI,O) < 1/3) (4.7)

is contained in the preimage of B(0, 2).
Theorem 11.5.1 says that the largest ball in T(1) centered at the origin has

the radius 2. The Schwarzian derivative of the logarithm is a boundary point
of T(l)with distance 2 from 0. In the upper hall-plane the logarithm is corn-

with the group consisting of all Möbius transformations of the form
z —' az or z —÷ — a/z, where a is a positive real number. It follows that if G is a
properly discontinuous subgroup of this group, then B(0, 2) is the largest ball
in T(G) with center at 0. For instance, this is the case in the Teichmüller space
of an annulus (cf. IV.4.3). For an arbitrary G, the determination of the largest
ball in T(G) centered at 0 remains an open problem.

We shall use the mapping (4.6) in section 5 in studying the complex analy-
tic structure of Here we draw the following conclusion.

Theorem 4.5. Every point of the Teichmüller space T3 can he represented by a
real analytic Beltrami diffirential and by a real analytic quasiconformal mapping.

PROOF. Let a point [p3 = p e be given. Suppose first that p can be repre-
sented by a quasiconformal mapping whose maximal dilatation is <2. Then
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p lies in the set (4.7), and so p can be represented by z -. —2y2q(i), which is
a real analytic complex dilatation. We also have an explicit expression for the
corresponding mapping f" (cf. 11.5.1 and 11.5.2) from which it becomes ap-
parent that is real analytic.

The general case is handled by induction. Assuming that the theorem is
true jf 0) <r, we show that it holds if 0) <2r. Let fP be an extremal
for the point p, with rs(p,O) < 2r. We write fTM = ofM2, where p2(z) is the
middle point of the line segment from 0 to in the non-euclidean metric of
the unit disc (ci. Theorem 111.2.2). Then is a Beltrami differential for G and

a Beltrami differential for Moreover, 0) <r and r5.([/1j], 0) <.
r with 5' = if/0U2. From this the theorem follows. 0

Theorem 4.4 can be generalized. Every point [p] e T5 determines uniquely
the quasidisc = Puttingtogether a large part of our previous ana-
lysis, we obtain a lower bound for the distance to the boundary of the point
s,1 of T(GJ in terms of the inner radius of univalence (defined in 111.5.1) of

Theorem 4.6. For every sp T(G), the ball

B(s,1,0,(A,1)) = <

is contained in T(G).

In 111.5.3 we proved that < lies in T(1).
Consequently, the theorem follows immediately from (4.4). 0

We recall that in T( 1), the inner radius (A,1) is precisely the distance from
to the boundary (Theorem 111.5.1).

4.6. Equivalence of Metrics

The topological equivalence of the metrics r5 and rj can be proved with
the aid of Schwarzian derivatives or of quasisymmetric functions. Neither
method goes to the heart of the matter, but both give the desired result easily.
The method based on tht use of Schwarzian derivatives produces better
constants. In fact, we can prove that the metrics are even uniformly equiva-
lent, i.e., the identity mapping (T5, 'rj T5) (T5, t5) and its inverse are uniformly
continuous.

Theorem 4.7. The metric of the Teichmüller space is unjformly equiva-
lent to the metric ti T5 induced on T5 by the metric of the universal Teichmüller
space. For every poiflt p e

� 3. (4.8)
r(p,q)
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More generally, on every bounded set A c T5,

� 3(1 + diaA)r(p,q), (4.9)

where dia A denotes the diameter of A in the ta-metric.

PROOF. Let p e and jie p. We know that

�
On the other hand, it follows from Theorem 4.4 and formula (4.6) that

�
Hence,

� 3f3(p,O). (4.10)

In order to generalize this estimate for an arbitrary pair of points of T5, we
fIx p = [j.t] T5 and consider the mapping defined by

=

The function &,, induces a well-defined mapping

[v] —* = (4.11)

which is an bijection of the universal Teichmüller space T onto
itself. It maps T5 dñto the Teichmüller space where S" = H'/Gu, and it is
an isometry of (T5, onto r5). The last assertion follows directly from
the definition of the Teichmüllcr metric.

The mapping (4.1 1) takes the points p = and q = [vJ ofT5 to the points
0 and [A] = ;([v]) of Hence, by (4.10),

135(p,q) = < 3/3(0,[A]) = 313(p,q).

Since trivially 13 � 135, we have established the double inequality

fl(p,q) < 135(p,q) � 313(p,q) (4.12)

for all points p and q of T5.
The inequalities (4.12) show that the metrics PITs and are uniformly

equivalent. Since

fi=tanht, (4.13)

it thc Teichmüller metrics nT5 and rs are also uniformly
equivalent.

From (4.12) and (4.13) we obtain

1 1+3t 3t
r5�—log

2 1—3t l—3r

if < 1/3. This yields inequality (4.8). Also
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(4.14)

if t � a < 1/3.
Let A be a set in T5 with a finite diameter dia A in the Trmetric, and p and

q points of A. If t(p, q) a, we just that (4.14) holds. If t(p, q)> a,
then .

dia A/3(1 + dia A) we obtain (4.9). 0

We proved in 3.3 that the Teichmüller space r5) is complete. If the
result is combined with Theorem 4.7, we conclude that

T is true of their homeomorphic images, we have reproved
Theorem 4.2: T(G) is a closed subset of T(l).

4.7. Bers Imbedding

Theorem 4.7 makes it possible to generalize Theorem 111.4.1 immediately
(Bers [8]).

Theorem 4.8. The mapping

[p]—SJ1H (4.15)

is a homeomorphism of(T5, onto (T(G), q).

PRooF. By Theorem 111.4.1, this mapping is a homeomorphism of(Ts,rITs)
onto T(G). By Theorem 4.7, the metrics t5 and ti are equivalent, and the
theorem follows. 0

In view of Theorems 4.3 and 4.8, we are again justified in calling the
mapping (4.15) the Bers imbedding of the Teichmüller space.

In 4.5 we proved that B(O, 2) c T(G) without utilizing relation (4.4). We
shall now show, without resorting to (4.4), that every point of has an
open neighborhood in Q(G) which is contained in T(G).

To prove this, let us consider in T(1) the mapping i/i defmed by 'I'(s,) =
If). is the Bers imbedding of the universal Teichmiiller space onto T(1),

then t/i = (Here and ç are as in 4.6.) It follows that is a
homeomorphism of T(1) onto itself. Furthermore, maps T(G) onto T(G"),
and Q(G) T(1) is mapped onto n T(1) (Lemma 4.1).

Let V be an open ball in centered at the origin which is contained in
Write V = Q(GsL)n V0, where V0 is a neighborhood of the origin

in T(1). Since T(1) is open in Q(1), the preimage ,/r'(V) = Q(G) i,lr'(V0) is a
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neighborhood of in Q(G). This neighborhood is contained in i,Iii(T(GU)) =
T(G).

We have proved without making use of(4.4) that T(G) is closed in ii!) and
open in Q(G). These results imply that T(G) is open and closed in T(1).
Since T(G) is connected, it follows that T(G) is the component of Q(G) T(l)
containing the origin. This result can be used instead of (4.4) in proving
Theorem 4.6.

Remark. In 111.4.5 we proved that T(1) = mt U(1). It follows that T(l) =
mid 7(1), i.e., every neighborhood of every boundary point of T(l) contains
points which are in the complement of the closure of

In the general case it is not known whether T(G) agrees with the interior of
U(G). However, it is Irue that

T(G) = mid T(G). (4.16)

For finitely generated groups G of the first kind, this was proved by Abikoff
[3] (who resorted to an unpublished result of Thurston). Quite recently.
(4.16) was established by Bers [13) in the general case. In a note, [I]
has announced the result that T(G) is the component of mt U(G) containing
the origin. By aid of Luravlev s result, Shiga [1] proved that if G is finitely
generated and of the first kind, then indeed T(G) = mt U(G).

4.8. Quasiconformal Extensions Compatible with a Group

We conclude this section by showing that for suitable reflections, the Ahifors
extension of Theorem 11.4.1 is compatible with the action of a group.

Given a point S1 of T(G) and hence a quasicircie we consider quasi-
conformal reflections A = of of;' for all in the equivalence class. We
show that there always exists a such that 1 is Lipschitz-continuous.

Since is compatible with the group G, i.e., og is a Mdbius trans-
formation for every ge G. it follows from Lemma 4.1 that is compatible
with G. We construct a quasiconformal mapping i/i: H' H' with boundary
values by means of the Douady—Earle method (see 3.6). Then i/i is
G-compatible.

Let us.consider in H'. It agrees with on Il', and it is
G-compatiole, because f and i/i are G-compatible. We take f,, o(JM)_i o
to be the extension of to the lèwer half-plane.

Now cli is a diffeomorphism and Lipschitz-continuous in the hyperbolic
metric of H'. We conclude exactly as in Lemma 1.6.4 that with our choice of

the reflection A = is Lipschitz-continuous and, with the
exception of continuously differentiable. In 3.5 we proved that

(4.17)

for every element of the deformed group GM = = g OfU' J9 E G}.

Letf be a univalent function in AM = compatible with GM. Following
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the proof of Theorem 11.4.1, we use the representation f = w1 /w2, where w1,

w2 is a normalized pair of solutions of the differential equation w"
We assume that f is holomorphic on and set for z e AM,

w(z) — + (2(z) —z)w(z)

— W2(Z) + (2(z) —

By Theorem 11.4.1, there is a positive constant c, which depends only on
[p3, such that if uS1 II <c, then wo 2 is a quasiconformal extension off (A
modification with the help of a Möbius transformation is required, because

is unbounded. The bound e need not be the same as in Theorem 11.4.1,
because 2 is constructed differently.) Assuming that ITS,lI <e, we shall prove,
as a supplement to Theorem 11.4.1:

The quasiconformal extension w o 2 off is compatible with the group

PROOF. The result follows by direct computation. First of all (cf. 111.5.4),

öA(z) (2(z) — z)2S1(z)=
= + 282(z) —.

Making use of the identity (g(z1) — g(22))2 = g'(z1)g'(z2)(z1 — 22)2, which
holds for all Möbius transformations g, and because of (4.17), we obtain

(2(gM(z)) — = — = — z)2.

Furthermore,

=

and by our hypothesis, = These formulas yield

— —

2aA(z)

From this and (4.17) it follows that

= (4.18)

By (4.17),

Combined with (4.18), this shows that is compatible with GM. D

5. Complex Structures on TeichmUller Spaces

5.1. Holomorphic Functions in Banach Spaces

With the aid of the Bers imbedding we can introduce a natural complex
analytic structure into the Tcichrnüllcr space The Tcichmüller space thus
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becomes a complex analytic Banach manifold, a generalization of the notion
of a complex analytic n-manifold defined in IV.l.2.

First of all, we shall recall the definition of holomorphic functions in
Banach spaces. Let E and F be Banach spaces over the complex numbers,
and U c E an open set. A function f: U —. F has a derivative at a point
x0 e U ii there exists a continuous complex linear mapping Df(x0): £ —. F
such that

+ h) — f(x0) — Df(xo)(h)IIF
—

h-O

The mapping Df(x0) is called the derivative of f at x0. A function f: U —. F
which has a derivative at every point of U is said to be holomorphic in U.

The composition of holomorphic functions is holomorphic where defined.
A holomorphic function f: U —. f(U) is biholomorphic if it has a holomorphic
inverse. In the case E Ctm, F = CA, the above definition coincides with the
usual notion of holomorphic functions.

In order to get a connection with ordinary complex-valued analytic func-
tions, we introduce the dual P of F; The set F consists of all continuous
complex linear mappings of F into C. The norm

Jx* ItxIi, � l}
makes P a Banach space. A set A c P is called total if = 0 for every

-

There are two characterizations which, taken together, make it possible to
consider only complex-valued functions of a complex variable when it comes
to checking whether a mapping between Banach spaces is holomorphic.

Lemma 5.1. A function f: U —. F is holomorphic and only it satisfies one
of the following two conditions:

(i) For every XE U and e E E, the function w —, f(x + we) is a holomorphic
function on an open neighborhood of the origin in C with values in F.

(ii) The function f: U —. F is continuous and there exists a total subset A of the
dual P such that, for every e A, the function of: U —. C is holomorphic.

Conditions (i) and (ii) are given in Bourbaki [I], § 3.3.!.

5.2. Banach Manifolds

A complex Banach manifold M is a Hausdorif space with an open covering
of sets each of which is homeomorphic to an open subset of a complex

space (not necessarily the same for the open sets of M). Suppose M
has an atlas in which all parameter transformations are biholomorphic. A
maximal atlas with this property is called a complex (analytic) structure on
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M. A manifold M with a complex analytic structure is called a compiex
analytic Banach mamfold.

Theorems 4.8 and 4.3 assert that the Teichmüller space T3 is actually
bally bomeomorphic to an open set in the complex Banach space
which consists of the quadratic differentials with finite norm for the covcrh*
group G. Hence, by using this result, we could make the Teichmüller space a
complex analytic Banach manifold.

We shall show that, in fact, a natural complex structure for T5 is obtained
in this manner. However, the required verifications are easiest to carry out
with the results at our disposal if we introduce the complex structure a little
differently, using local parameter mappings.

A complex analytic structure can be given to a Teiclunüllcr space in several
ways. This is particularly true in the case of compact Riemanji surfaces. On
the other hand, the various approaches lead to isomorphic structures, so that
we are free to speak of a canonical complex structure on a Teichmüller space.
Here we shall be dealing with the general case, excluding only those Ricmann
surfaces which do not have a disc as a universal covering surface. That we
arrive at a natural complex structure is seen from Theorems 5.2—5.6.

In section 9 we shall construct the "Teichmuller imbedding" which shows
that the TeichmUller space of a Riemann surlice of genus p is homeomorpbic
to C3"3. However, the complex structure the Tcichmüller spaces inherit.
from through this imbedding is not a natural one: Given two Riemann
surfaces Sand S of genus p. the bijective isometrybetween and T5. induced
by a quasiconformal mapping of S onto S' is usually not biholomorphic with
respect to these structures. Tcichmüller was aware of this state of affairs, but
in one of his last papers.(Teichmuller [3]), he claimed to have proved the
existence of the "right" complex structure. This paper is difficult to read, and
today Teichmüller's reasoning on this point is not regarded as convincing.

The first complete proof for the pxistence of the complex structure in
Teichmüller spaces of compact surfaces is due to Ahlfors [21; see also Bers
[2]. Subsequently Bers ([7], 18]) introduced complex structure into an arbi-
trary TeichmUller space by means of the mapping p —+ S1.

5.3. A Holomorphic Mapping between Banach Spaces

The introduction of the complex structure on the Teichmüller space is
based. on the following result.

Theorem 5.1. The function

p —. A(p) = S1111. (5.1)

which maps the open unit hail B(G) of the space of measurable (— I, I)-
for G into the space Q(G) qf holomorphic quadratic

for Q, is holonwrphic.
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Ppow. We have already seen that Q(G) is a Banach space. The ball B(G) is

an open subset of the Banach space LIG) of measurable(—•I, 1)-differentials
for G with finite Fix v B(G).

For and we set = q(z). Then A = is a total
set in the dual of Q(G). We apply condition (ii) of Lemma 5.1 to the function

—. s(w) = (5.2)

The set U in condition (ii) is now the neighborhood {wIIwI <(1 — Ii4uL)/
II v II of the origin in the complex plane. Then p + wv e B(G). Furthermore,
let F = Q(G) and =;.

By Corollary 11.3.1 and the Remark following it, the function

W —4 CS =

is holomorphic in U for every z E H. By formula (111.4.4), the function s is

continuous in U. Hence, by condition (ii) of Lemma 5.1, the function (5.2) is
holomorphic in U. Using this fact we conclude from condition (i) of Lemma
5.1 that (5.1) is holomorphic in B(G). - 0

Even though the definition of the complex structure on T5 with the aid of
the holomorphic mapping (5.1) requires a number of auxiliary mappings, as
illustrated by the diagram in Fig. 14, the idea is quite simple. The ball B(O, 2)
of Q(G) plays a distinguished role, because it follows from what was said in
4.5 that (5.1) has a holomorphic section there. In the preimage of B(O, 2) in T5
we take [vJ —9 S,IH as a local parameter. Near an arbitrary point [pJ of T5 a

local parameter is obtained if we first map isometrically onto in such a
way that [pJ is movçd to the origin. An easy verification shows that the
parameter transformations biholomorphic. In 5.4 and 5.5 we shall ex-
plain all this in detail.

5.4. An Atlas on the Teichmüller Space

Let us now introduce the auxiliary mappings which are needed in the de-
finition of the complex analytic structure on T5. For a given B(G), we
again write GU = As in 4.6, we consider the mapping

B(G) -. B(G'9, defined by
f&..(v) = fv0(fP)1,

or, in more explicit terms, by

=
(5.3)

The function &,, maps B(G) bijectively onto B(GM). (Application of sim-
ply means transforming the Riemann surface S quasiconformally to the SUr-
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B(G)

a—

Figure 14

face S'1 = If'/G'1.) From (5.3) and the definition in 5.1 it follows that is
bihol om orphic.

In 4.6 we noticed that the induced mapping ;, defined by =
is a bijective isometry of onto

For p 8(G), v we write

= (5.4)

By Theorem 5.1, this mapping of Q(G'1) is holomorphic.
From the proof of Theorem 4.4 we know that in the ball 2)

Q(G"fl <2}, the (5.4) has a section 2) —.

defined by

zEH. (5.5)

From (5.5) and the definition in 5.1 we see that or,, is holomorphic. /
Let it denote the canonical projection of B(G) onto and A and the;

Bers imbeddings of and respectively, into Q(G) andQ(GM). The com-
mutative diagram in Fig. 14 illustrates the mappings introduced here.

The collection

= (5.6)

is an open covering of In fact, is the preimage of B,,(0, 2) under the
homeomorphism

(5.7)

of onto T(G").

5.5. Complex Analytic Structure.,

We shall now prove that the restriction mappings define a complex
analytic structure for the Teichmüller space T5 of the Riemann surface S and
that this structure has the expected good properties. The proof does not
cover the case of a torus; the complex structure of the Teichmüller space of a
torus will be introduced in section 6.
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Theorem 5.2. The atlas
(5.8)

defines a complex analytic structure on the Teichmüller space The Bers
imbedding —' of T5 into Q(G) is holomorphic with respect to this
structure.

PROOF. Assuming that and are defined by (5.6) and (5.7), we choose two
elements and p2 of B(G) such that Vi,, is not empty. In
we have

=

All mappings on the right-hand side are holomorphic, as we have seen.
Consequently, as a composition of holomorphic functions, o is holo-
morphic. By changing the roles of p1 and P2 we conclude that a is

biholomorphic. Hence, (5.8) defines a complex analytic structure for T5.
It is not difficult to see that the complex structure we obtained by means

of the atlas (5.8) is independent of the representation H'/G we used for the
Riemann surface S. Theorem 5.5 expresses an even stronger result.

In order to complete the proof of the theorem, we still have to show that
the Bers imbedding 2: T5 Q(G) is holomorphic, i.e., that 1 is holo-
morphic in 2). Now

= Aoç' oak.

Since all mappings on the right are holomorphic, their composition lo h' is
holomorphic.

We shall now establish further results (Theorems 5.3-- 5.6) which show that
(5.8) defines a natural structure.

Theorem 53. The canonical projection

it: B(G) T5

is holomorphic, and it has local holomorphic sections everywhere in T5.

PROOF. First of all, we have
=

Since and are holomorphic, it follows that it is holomorphic.
Next, let us consider the mapping

of into B(G). All functions on the right-hand side are holomorphic. There-
fore, their composition i/ia is holomorphic. From the definitions we infer that

ito = identity mapping of (5.9)

Consequently. is the desired section.
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Since = we that it is an open mapping. We remark
that Theorem 5.3 determines the complex analytic structure of uniquely.

Theorem 5.4. The Bers imbedding T5 T(G) is biholomorphic.

PROOF. Suppose first that Q(G) is finite dimensional. (By IV.5.5, this is the
case ifS is compact; cf. also 9.7.) We then conclude directly from Theorem 5.2
that 1t is biholomorphic using the theorem by which a holomorphic bijection
is always biholomorphic in finite dimensional manifolds (Narasimban [1],
p. 86).

In the general case, we fix a point E T(G) and consider Schwarzians
s,e T(G)lying close to Then I = has a small Schwarzian deriva-
tive in the quasidisc fM(H). One proves that f has a quasiconhorinal extension
whose complex dilatation is in B(GM) and depends holomorphically on s.,
(Bers [9], Theorem 6; cf. the remark at the end of 11.5.1). The conclusion is
that A has a local holomorphic section at Since A = o it, we deduce from
Theorem 5.3 that is biholomorphic. 0

5.6. Complex Structure under Quasiconformal Mappings

Theorem 2.6 states that the Teichmüller spaces of quasiconlormally equi-
valent Riemann surfaces are isomorphic in the sense that there exists a
bijective isometry between the Teichmüller spaces. We can now strengthen
this result and show that such an isometry can be chosen to be biholo-
morphic.

Theorem 53. Quasiconformally equivalent Riemann surfaces have isometrically
and biholomorphically isomorphic Teichmüller spaces.

PRooF. Let S = H'/G and S' H'/G' be quasiconformally equivalent Rie-
mann surfaces. We consider a lift of a quasiconformal mapping of S onto S'
to a self-mapping of the lower half-plane. There is no loss of generality in
assuming that the lift is of the form fJL. We have B(G).

The mapping induced by p is now a biholomorphic mapping of
onto B(G'). It induces the mapping of T5 onto T5.. The theorem follows
when we prove that ; is biholomorphic.

If B(G') —' is the canonical projection, we have

(5.10)

Consider an arbitrary element vEB(G). in view of(5.9) and (5.10), we have in

= =

Again, on the right all functions are holomorphic, and so ç is bolomorphic.
By changing the roles of S and 5' we conclude that is biholomorphic. 0
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To be quite precise, we have not yet proved Theorem 5.5 for tori, which
have the complex plane rather than the half-plane as universal covering

•surface. In the next section we shall show that the TeichmUller space of every
torus is biholomorphically equivalent to the upper half-plane.

Theorem 5.5 can be applied to the modular group Mod(S) of T5, which was
introduced in 2.7.

Theorem 5.6. The elements of the modular group Mod(S) are biholomorphic
automorphisms of the Teichmüller space T5.

• PRooF. By Theorem 5.5, a quasiconformal mapping between the Riemann
surfaces S and S' induces a biholomorphic isoniorphism T5 —* The ele-
ments of the modular group are such isomorphisms induced by..-quasi-
conformal self-mappings of S. D

We proved in 1.5 that two compact Riemann surfaces are -quasiconfor-
mally equivalent as soon as they are homeomorphic. Moreover, we learned
in IV.5.2 that they are homeomorphic if and only if t)iey have the samç genus.
Therefore, in view of Theorem 5.5, the genus determines the Tetch-
muller space of a compact The abstract space corre-
sponding to surface* of genus p is denoted by T,,. Starting from a specific
Riemann surface S, as we have done, means fixing the origin in 1;.

In IV.5.5 we saw that the space of holomorphic quadratic differentials of a
compact Riemann surface..of genus p> 1 has finite dimension 3p — 3. There-
fore. Q(G) can be identiFied with T, becomes a complex analytic
(3p — 3)-manifold. We shall consider this question in greater detail in section
9 by using another imbedding of T5 into Q(G). In section 6 we shall prove that
'T1 is a complex 1-manifold.

6. Teichrniiller Space of a Torus

6.1. Covering Group of a Torus

In sections 3—54e considered Riemann surfaces having the half-plane as a
universal covering surface. Let us now assume that S is a Riemann surface
which has the complex plane C as its universal covering surface. If the
covering group G of C over S is trivial or cyclic, then all quasiconformal
images of S are conformally eqpivalent (ef. IV.4. 1). Leaving aside these cases,
which are uninteresting from the point of view of the theory of Teichrnüller
spaces. we assume that S is a torus, i.e., a compact surface of genus 1. By the
remark at the end of 2.6, the Teichmüller spaces of different tori are all
isom&rically bijective.
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The covering group G of C over a torus consists of translations

•

where w1 and are complex numbers, Im(co1/co2) 0, and m and n run

through all integers 1. We call the pair (Wi, W2) a base of G; the base is said
to be normalized if Im(co1/w2) > 0.

L*mma 6.1. Let (w1,co2) be a base of G. Then is a base.of G jf and
only if

= aw1 + bw2, =cco1 + dw2, (6.1)

where a, b, c, d are integers and

ad—bc=±1. (6.2)

if(co1,co2) is normalized, then is normalized if and only ad — bc = 1.

PROOF. The validity of (6.1) with integral coefficients is clearly a necessary
condition. it becomes sufficient if (6.1) can be solved with respect to co1 and
w2 so that and (02 are linear combinations of and with coefficients
in. Z. This occurs if and only if (6.2) holds.

From (6.1) it follows that

ad—bc
(6.3)

\W'2J \W2)

Assuming that (6.2) is true we see that Im(w1/co2) and are simul-
taneously positive if and only if ad — bc = 1.

Consider the elliptic modular group f which consists of the restrictions to
H of all Möbius transformations

az+b
z —_____

cz + d

where a, b, c, d are real integers and ad — bc 1. By (6.3) the group F acts
on H.

•The group r contains elliptic transformations. These are of two types.
Either they are conjugates of the mapping z -+ — lJz, which has the fixed
point i in H. These transformations are of period 2. Or they are conjugates of
z -÷ — 1/(z + I), which has the fixed point — 1/2 + in H, and are then
of period 3. Even though r is not fixed point free, it is not difficult to prove
that F acts properly discontinuously on H. (For more details about the
properties of F we refer to Lehner [1], pp. 87, 99, and 139.) By Theorem
IV.3.2 and the remark following it, the quotient H/T is a Riemann surface.

Let S = C/Gibe a torus and (w1,w2)a normalized base of G. We conclude
from 6:k that is a pair of non-zero complex numbers, then

is a hormalized base of G for a 0 if and only if is
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equivalent to to1 /0)2 under the modular group r. Hence every torus can be
represented as a point of the Riemann surface H/r.

6.2. Generation of Group Isomorphisms

Theorem 1.3 says that if S is a Riemann surface which admits a disc as its
universal covering surface and for which the covering group is not elemen-
tary, then the only conformal deformation of S onto itself is the identity
mapping. For tori the situation is quite different:

Lemma 6.2. Let S be a torus and p and q arbitrary points of S. Then there is a
conformal mapping f: S —, S homotopic to (he identity such that f(p) = q.

PROOF. Let it: C —'S = C/G be the canonical projection and z€ir'{p}, WE
{q}. A translation commutes with every g E G. Therefore, the mapping

—. + t(w — z) can be projected to a conformal mapping j: S S for every
t, 0 � t � I. As t varies from 0 to 1, we obtain a homotopy from the identity
mapping to f1 = f, and f(p) q. 0

Lemma 6.2 tells us that in studying the Riemann space R5 and the Teich-
mUller space of a torus we can restrict ourselves to mappings S S'

which are normalized by a condition p(p) = p'. pES, p'ES'. If it: C —iS and
it': C —' S' are the canonical projections and we take p = ir(O). p' = n'(O), then
4, has a unique lift f: C C with the property f(O) = 0. We call such a lift f
normalized. A normalized f induces an isomorphism of G onto G' under
which the transformation z —, z + mw1 + nw2 maps to z —' z + mf(co1) +
nf(w2).

In the case of tori it is easy to show that every isomorphism between G and
G' can be generated in this manner.

Theorem 6.1. Let S = C/G and 5' = C/G' be tori and 0: G —i G' an isomor-
phism. Then there is a homeomorphism of S onto S' which induces 0.

PROOF. Let (w1,w2) be a base of G and suppose that (w1,a2) —, ('l,'2)
under 0. Consider the affine transformation a which fixes 0 and maps to
cot, i = 1, 2. Then a determines 0, and it projects to a homeomorphism of S
onto S'. 0

Let ip: S —' S' be a homeomorphism with a normalized lift f such that
f(co1) = w, i = 1, 2. If h = then h(z + w3 = h(z) + w. From this we
conclude that h is sense-preserving (Theorem IV.3.5). Hence f and a are
simultaneously sense-preserving.

Let r = a,1/ai2, r' = If r' I, then

a(z) = 2(z + Pr). (6.4)
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Direct calculation shows that

(6.5)

Suppose that (w1, COi) is a normalized base of G, ie., that Im t > 0. By (63),
we then have lar' > 0 if and only if < 1. But < 1 is equivalent to a
being It follows that is sense-preserving if and only if
'Im(f(o1)/f(w2))> 0. 11 = then qi is sense-reversing and Im(f(w2)/

<0.
If < 1, then (6.4) defines a quasiconformal mapping. Since the projec-

tion of a quasiconformal a is quasiconformal, it follows that all tori are
equivalent. We also conclude from the proof of Theorem

6.1, by use o( Theorem IV.3.5, that to every sense-preserving homeomor-
phism p between two tori S and S' there is a quasiconformal mapping of S
onto S' which is homotopic to 4p. (This is a new proof of Theorem 1.5 for
tori.)

6.3. Conformal Equivalence of Tori

Let S = C/G and S' = C/G' be two tori and a base of G. We first
show that S and S' are conformally equivalent if and only if there is a
complex number A 0 such that (Ao1 , Aco2) is a base of G'.

In fact, if S and S' are conformally equivalent, then by Lemma 6.2 there
is a conformal map of S onto S' whose lift f: C -. C is normalized. Since f
is a conformal self-mapping of C with f(O) = 0, we have f(z) = Az. Then

and so is a base of G'. Conversely, if (Aw1,Aco2) is a
base of G', then the projection of z —' Az is a conformal mapping of S onto S'.

Theorem 6.2. Let S C/G and S' = C/G' be tori and (co1,co2) and
normalized bases of G and G'. Then S and S' are conformaUy equivalent if and
only the points w1/co2 and o11/w'2 are equivalent under the elliptic modular
group.

PROOF. We just showed that S and are conformally equivalent if and only
if there is a A 0 such that 4Aw1,Aw2) is a base of G'. From what we
at the end of 6.1 it follows that this is the case if and only if the points w1 /w2
and are equivalent under the elliptic modular group. 0

Theorem 6.2 provides a model for the Riemann space R5 of tori. We
conclude from it that R5 can be mapped bijectively onto the quotient of the
upper half-plane H by the modular group r. The mapping x: R5 -. H/I' is
obtained if we fix a normalized base (cot, w2) for the covering group of C over
Sand set = [f(co1)/f(o2)] for peR5,fEp.

Repeated application of the reflection principle shows the existence of a
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"modular" function J, which is holomorphic in H, maps II onto C, and is
autornorphic with respect to the group IT. By using J we can identify H/IT
with the complex plane (Lehner [1], pp. 4—5).

Let f be a conformal self-mapping of S. The lift of f to C is then of the form
z 2: -i- constant. If A = I or A — 1, then conversely, the projection of

± z + Constant IS a conformal self-mapping of S. These are the trivial
conformal self-mappings of a torus.

In certain exceptional cases, a torus admits other conformal self-mappings.
We deduce from the preceding' considerations that z --' Az projects to a con-
formal self-mapping of S for some A ± I if and only if w1/c02 h(a1/w2)
for a transformation he IT different from the identity mapping. In other
words, w1/w2 must be a fixed point of an elliptic transformation heIT. As
stated before, there are two possibilities. First, h is a transformation of period
2, i.e., a conjugate of z —+ — liz. Then (w1,w2) can be chosen such that the
lundamental parallelogram with the vertices 0, cot, + w2, w2 is a square,
and A = ± i. Second, h is of period 3, i.e., a conjugate of z — 1/(z + 1). In
this case there is a fundamental parallelogram which again has sides of equal
length hut the angles are 7t/3 and 2it/3, and A = ± 1/2 ± These are the
only cases in which a torus admits non-trivial conformal self-mappings.

The rest of this section is concerned with showing that the TeichmUller
space of a torus is isomorphic to the hyperbolic upper half-plane (or to the
unit disc). It follows, in particular, that the Teichmüller space of a torus is
branched over the Riemann space at points which correspond to the fixed
points of F or, what is the same, which correspond to symmetric tori admit-
ting non-trivial conformal self-mappings.

6.4. Extremal Mappings of Tori

We obtain a key to the properties of the Teichmüller space oC a torus by
studying mappings which are extremal in a homotopy class. following
basic result is due to Teichmüller ([1], p. 31).

Theorem 6.3. In each homotopy class of sense-preserving homeomorphisms
between tori there is a mapping whose is are affine and which is extre,nal, i.e.,
which has smallest maximal dilatation. Having affine lifts or being extretnal
determines the mapping uniquely up to conformal mappings homotopic to the
identity.

PROOF. Let S = C/G and S' = C/G' be tori, and consider mappings in a given
horn otopy class of sense-preserving hoineomorphisms of S onto S'. By Lemma
6.2 and the fact that conformal self-mappings of C are afline, we may restrict
ourselves to mappings with normalized lifts. Let F denote the class of these
normalized lifts.
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Fix a normalized base (w1 , co2) of G. There exists a normalized base
of G' such that F is the class of seif-homeomorphisms .f of C

satisfying f(O) = 0 and

f(z + mw1 + nco2) = f(z) + + na4 (6.6)

for all z e C and m, n 7L. This follows from Theorem IV.3.5, in view of the fact
that the identity is the only inner automorphism of G'. Clearly, there is a
unique affine mapping w in F.

Let feF be K-quasiconformal, and set fk(z) = f(kz)/k, k = 1, 2, .... Then
every fk F is K-quasiconfoEmal. From (6.6) we conclude that for k cc, the
mappings fk converge to w, uniformly in the euclidean metric. By Theorem
1.2.2, the maximal dilatation of w is at most K. It follows that the projection
of w is extremal in the given homotopy class.

We now prove that there are no other extremals in this homotopy class.
There is no loss of generality in assuming that w is a stretching in the direc-
tion of the real axis, or more precisely, that w(x + ly) = Kx + iy, K � 1. In
fact, this normalization can he obtained by suitable conformal self-mappings
of C, which do not change the maximal dilatation. Note that K is the maxi-
mal dilatation of w.

Let f be an extremal mapping competing with w. We prove that f = w.

Sincef — w has the periods w1 and co2, there is a positive number L such that

If(z)—w(z)I�L (6.7)

for every z e C. Since f is absolutely continuous on lines, we infer from (6.7)
that for every r > 0,

flfx(x + iy)Idx � Jfx(x + � Kr — 2L

for almost all [0, rJ. If Q = {(x, y)IO � x <r, 0 y r}, it follows that

� Kr2 — 2Lr.
JJQ

As r —, cc, the number of period parallelograms meeting Q is of the order
of magnitude r2(1 + o(1))/m(P), where m(P) is the area of the period paralle-
logram P. Hence,

Kr2 2Lr �
r —, cc we obtain

Km(P) �

As an extremal,f is K-quasiconformal. Therefore, lf,J2 � KJ a.e.,'where J
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is the Jacobian of f (cf. 1.3.4). Application of Schwarz's inequality yields

K2(m(P))2 � m(P) Jf dx dy � Km(P)m(f(P)). (6.8)

Because f(P) and w(P) are fundamental domains of G' with boundaries of
measure zero, m(f(P)) = m(w(P)) = Km(P). We see that equality holds every-
where in (6.8), and so

= KJ(z) (6.9)

almost everywhere. — —

We write ôí+ t3j J = tail2 — I'3f (2 From (6.9) we first conclude that
of + all = + a.e., and then that the complex dilatation equals

a.e. (K — I )/(K + I). Thus f is afline, hence f = w, and the theorem is proved.

6.5. Distance of Group Isomorphisms from the Identity

Let us represent the torus S = C/G as the point w1/w2 of the upper half-
plane, where as before (w1,w2) is a normalized base of G. We recall that if we
change (w1,w2) to another normalized base of 0, then = aw1 +
bw2 and + da,2 for a, b, c, dE7L with ad — be 1. This implies that

is the image of under the Möbius transformation z h(z) =
(az + b)/(cz + d) belonging to the elliptic modular group f.

Let S' C/G' be another torus and 0: G —i 0' a given isomorphism.
If 0 is induced by a sense-preserving homeomorphism S —' S' with a
normalized lift f, the numbers f(w1) and f(°2) do not depend on the partic-
ular choice of q (and hence of f). Also, if and h are as above, it
follows that Wf('2) = h(f(w1 )/f(w2)) for the same h this is seezj from
f(mco1 + nw2) = n!f(co1) + nf(w2), m, neZ. We conclude that the hyperbolic
distance in the upper half-plane between the points f(Wk)/,f(w2)
depends solely on the isomorphism 0, not on the base used for 6 the
choice of the generator f. We denote this distance by 5,. It measures how
much 9 deviates from the isomorphisms induced by conformal mappings.

Lemma 6.3. Let 0: G —' 6' be an isomorphism generated by a normalized K-
quasiconfornial mapping f. Then

59�4logK. (6.10)

Equality holds and only Vf is the affine transformation generating 0.

PROOF. Let w be the affme nonnalized mapping which generates 0. If w(z) =
A.(z + p1), we see from (6.5) that = It' — TI/It' — where r =

= w(w4)/w(w5). Hence, if K is the maximal dilatation of w,
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_____

logK =log1
H

=logfr,
1 I' =

2ö0.

Consequently, (6.10) holds as an equality for the affine mapping. Inequality
(6.10) and the "only if" part of Lemma 6.3 follow from Theorem 6.3. 0

6.6. Representation of the Teichmüller Space of a Torus

Let us start again from a fixed torus S = C/G and from a normalized base
of G. Let p be a point of the Teichmüller space In considering

representatives of p we may restrict ourselves to mappings of S which have
a normalized lift f; this follows from Lemma 6.2. We take such a q.' e p and set

= f(wj)/f(w2).

We show that is a well defined mapping of T5. Let us consider another
mapping q' p with the normalized lift f'. Then there is a conformal map
c: 4)1(S) with a normalized lift such that c'o q,' is homotopic to 'p.
The lifts of 'p and. 004)' induce the same group isomorphism. But the lift
of ci is of the form z —, ).z, and so i = 1, 2. This shows that
f(w1 )/f(w2) does not depend on the choice of 'p p. From the discussion
after Theorem 6.1 it follows that the image point lies in the upper
half-plane H. -

The change of (w1,co2) to another normalized base of G means that iJ' is to
be replaced by ho where h is an element of the elliptic modular group. This
follows from what was said in 6.5 before Lemma 6.3.

Thm6.tThemappingçl':T5—+H,definedby..

= (6.11)

where f is the left of 'p, is a bijective isometry of onto the upper
half-plane fu*Lshr4 with the hyperbolic metric.

PROOF. The mapping is injective: If fr(p1) = there are mappings
i = 1,2 whose normalized liftsf, satisfy the equations f1(w,) = Af3(w,),

i = 1,2. If z s(z), then 11 and sof2 determine the same group isomor-
phism. It follows that their projections q1 and 0° 4)2 are homotopic. Here ci,
as the projection of s, is conformal, and so Pi P2.

The mapping is swjective: Given a point z H, we choose an arbitrary
non-zero complex number After this wà set = By Theorem 6.1,
there is a homeomorphism 'p of S whose lift f is normalized and has the
properties = i = 1,2. From the discussion following Theorem 6.1 it
follows that 9) is sense-preserving. It determines a point p€ T3, and we see
that = z.

The mapping is an isometry: Given two points e i = 1,2, consider
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their representatives with the normalized lifts j. Let 4,1(S) —+ be
the extremal in the class of quasiconformal mappings homotopic to 4'2 0
and having normalized lifts. For the Teichmüller distance is we then have
t5(p1, P2) = log K, where K is the maximal dilatation of On the other
hand, if f is the normalized lift of it follows from Lemma 6.3 that K

is equal to the hyperbolic distance of the points 11 (o i)/fi(w2) and f(f1 (w1 ))/
f(f1(w2)). But f of1 induces the same group isomorphism as 12' and so
f(f1(w1)) = f2(wj, i = 1,2. Thus the Teichmüller distance ts(pi,P2) coincides
with the hyperbolic distance between and iJ'(P2), and the theorem is
proved. .0

We know that every equivalence class [4,] has a representative whose lift f
is an affine transformation —* + the (constant) complex dilatation

,z is of absolute value <I and depends only on This fact makes it
possible to express (6.11) in an explicit fçtm. If we denote the point [4,] by
[z3, we obtain

= +
(6.12)

W2+CLY2Z

The expression (6.12) leads to a simple representation of the Teicjimuller
space of a torus. -

Theorem 6,5. The mapping - .

(6.13)

is a bijective isometry of the Teichmüller space T5 onto the hyperbolic unit disc
D.

PRooF. The theorem follows immediatelyfrom the fact that (6.12) is a bijec-
tive isometry of onto the hyperbolic upper half-plane. 0

6.7. Complex Structure of the Teichmüller Space of Torus

By Theorems 6.4 and 6.5, the TeichmUller space of a torus is a complex
1-manifold.We nOw introduce a complex analytic structure for T5 by means
of the mapping (6.13). The use of (6.11) woWd of course lead to the same
structure, because z is a conformal mapping.

It follows that the Teichmüller spaces of tori art not only IsoMetrically but
also biholomorphically equivalent. We show that a quasiconformal mapping
always induces such an equivalence. Recail that -any tori are quasi-
conformally equivalent. 1'

Theorem 6;6. Let S and S' be and w: S -+ N' a mapping.
Then the bijective isometry [4,] —* [4,0 of T3 onto T5. is biholomorphic.
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PROOF. The isometry depends only on the homotopy class of w. Therefore, by
Theorem 6.3, there is no loss of generality in assuming that w has a lift

+
We may assume that the lift of is + Then qow1 has the

complex dilatation e°(z — pz), where = It follows that
['p] —+ {çpow'] induces the contormal self-mapping z — p)/(l — gz)
of the unit disc. 0

By Theorem 6 6, which completes the proof of Theorem 5.5, we can speak
of the complex analytic structure of the abstract TeichmUller space T1 of tori.

It is of particular interest hat under the mapping (6. 3), which defines the
complex .analytic structure for the Teichmüller metric agrees with the
hyperbolic metric of the unit disc. Teichmüller spaces 1,, p> 1, connec-

between the metric and the complex analytic structure will he studied
11) 9.5 and 9.6.

Another interesting result is the 'oncrete obtain for the modu-
lat group Mod(S) of 1 L from our conside;ations that two points
Pt P2 of are Mod(S) if and only if their images
tji(p1) and in H are equivalent tinder the efliptic modular group F. In
fact. h h is an isouioiphisrn of F unto Mod(S). (Cf., also. the

R5 K/F and If with Theorem 2.7, which says that
-

'the isomorphisin Mod(Sj 1 the- discontinuous nature -of
Mod(S). The discontinuity is true of all compact surfaces S but
more difficult to rove if the genus of S is > 1 (Kravetz [1], Abikoff [2)).

I or cs-cry Mohws transfori t n q whtLh maps H onto itself t1s gotfr
is a hiholomorphic self-mapping of It follows- that the modular group is a
proper subgroup of the full group tif biholomorphic automorphisms of the
Teichmüller space of a torus. lu 'fr, p> I. the situation is different, as we
shall see in 9.6.

7. Extremal Mappings of Riemann Surfaces

7.1. Dual Spaces

Having discussed the Teiclim a Riemann surface of
genus 1, we shnfl no.v cu"ipact whose genus
is greater than l. •lLcir are iutt as accessible as the space
of a torus, because no r a rcrrescntation for the
covering group.

in order to get an insight into e of spaces of
compact surfaces, shall in in 8 the extremal
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quasiconformal mappings whose maximal dilatations determine the distance
between. pQints in the 'Teichmüller space. This is equivalent to considering
mappings which are extremal forgiven boundary values. Some preliminary
remarks were made in 1.5.7 and in 2.2 and 3.7 Of this chapter. -

A good part of our considerations can be done in the general seKing
The special case of compact surfaces will not be taken up until the
section 7.8.

Let S be a Riemann surface whose universal covering surface is conformal-
ly.quivaledt to a disc. In this section, we take the universal covering surface

the unit disc D. As before, G denotes the covering group of D over S.
We shall derive a necessary condition satisfied by the complex dilatation of

the extremal mapping. The condition will be in terms of notions related to
Li-spaces. First, we introduce the space of all bounded measurable
(—1,1)-differentials of G. As we have noted before is a complex
Banach space in which the Beltrami differentials of G form the open unit ball.

Next we consider quadratic differentials of G, i.e., measurable functions
on D which satisfy the condition ((p0 g)g'2 = for g c G. We define the

L1-norm

IIq'II = I
JN

whr:e N is a Dirichlet region for G. Since Iq' I is a (1, 1)-differential of G (cf.
IV.l.4), this norm is independent of N. The linear space L'(G) of quadratic
differentials of G with a finite L'-norm is also a Banach space.

If E and (p EL1 (G), the integral of the product is well defmed on
S (cL IV.l.4). We write

= f jup.
JN

Because and coincide with the and
L1-spaces of N, it follows from standard results on If-spaces that the map-
ping is an isomorphism of onto the dual of L1 (G) (cf. Dunford—
Schwartz [1], p. 289).

7.2. Space of Integrable Holomorphic Quadratic
Differentials

Let A(G)denote the subspace of L'(G) whose functions are holomorphic. l1he
set A(G) is closed in L'(G). For if D, = D(z0,r) = {zIIz — <r} is contained
in D and çoeA(G). then by the mean value theorem for analytic functions,

•0
(7.1)

It follows, since {g(N)Ig E G} is locally finite in D, that if and -P4)
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in L1(G), then (choosing suitably from its equivalence class) q,, locally
uniformly in 0. Hence, p is holomorphic. We infer that A(G) is a
Banach space.

Let 1 be a bounded set in A(G). From (7.1) we see that the functions 4E(1)
are locally uniformly bounded in absolute value in D. Consequently, (I) is a
normal family, and so every. sequence of functions p,, e 'b contains a sub-
sequence which converges locally uniformly in D to a limit function
It follows from Fatou's lemma that

� (7.2)

The functions are saId to converge weakly to iii A(G), i.e., the norms of
are uniformly bounded and urn 4, locally uniformly in 0.

Convergence of a seqøenoe in 4(0) implies its weak convergence, whereas
the converse is not always true.

In 4.2 we introduced the Banach space Q(G) consisting of holomorphic
quadratic differentials of G for wbbb the hyperbolic sup-norm

fl(P lie =
z.N

is finite. IfS is compact, the spaces A(G) and Q(G) have the same elements: In
this case the closure of N lies in D so that every holomorphic quadratic
differential of G has a finite V-norm and a finite hyperbolic sup-norm.

In certain other cases we can readily compare the spaces A(G) and Q(G).
Writing I I = and integrating over N, we obtain the inequality

I �
JN

where denotes the hyperbolic area of S (cf. IV.3.6). Hence, if this area is
finite, then Q(G) A(G).

On the other band, it follows from (7.1) that

ir(1 � I
JD

Hence, if G is trivial, then A(G) Q(G). The example q(z) (1 — z)2 shows
that A(G) is properly contained in Q(G).

7.3. Poincaré Theta Series

There is a classical method for producing quadratic differentials from analy-
tic functions. 1ff is holomorphic in 0, then

is called a Poincaré theta series of f.
Let A(l) denote the space 4(0) in case G is the trivial group, Le., A(1)

consists of functions holomorphic and integrable in 0.
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7.1. The mapping f —, €)f is a continuous, linear surjection of A(1)
ontoA(G) of norm

PROOF. Let f6A(l), z0eD, and r = (1 — There exist G.equivalent
Dirichiet regions N1, ..., such that D(z0, 2r) N1 t.. For every
z e D(z0, r) we have•

mr2 �
JOEG Dr(2)

k C C

E I
k Ill

.JD

where (7.!) yields thefirst inequality. It follows that 6 is locally
uniformly convergent in D.

From this we conclude that OfeA(G). Also,

= J
�

J
=

J =
N fq

This implies continuity of the mapping f —' øf, since its linearity is clear. To
prove c,urjectivity requires more analysis, and we refer to Lchner [2]. D

and feL' in 0, then

J pf J $0 g(N) qeG N

Hence, for and fEA(l), we arrive at the relatioii

I = I (7.3)
JO JN

which will have applications later.

7.4. Infinifesimally Trivial Differentials

Let N(G) denote the subset of which is orthogonal to il(G), i.e., for
whose elements

= 0
JN

for e ,1(G). Clearly N(G) is a closed linear subspace of Differ-
which belong to N(G) are called infinitesimally trivial.

I ct extend all functions to the plane by setting 0
ouside 0. We denote by the quasiconformal mapping of the plane which

complex dilatation and is so normalized that

z) 0.
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Then p determines f,, uniquely, and is conformal in F = {z I izI> I }. As
before, we use the notation s,, = for the Schwarzian derivative.

In section 4 we studied extensively the mapping [jij of the TeichmUller
space into the space Q(G) of quadratic differentials, the different choice for
the universal covering surface and for the normalization of which we have
made here is of course unessential. We called a differential p trivial if it
determines the origin of Trivial differentials p can also be characterized by
the property that the Schwarzian derivative vanishes identically. Infinite-
simally trivial differentials admit a similar characterization. Note that if

and w is a complex number, then wp is a complex dilatation
<

Theorem 7.2. A dWerential p is infinitesimally trivial Ifand only If

Jim = o
w-.O W

for every z E.

PRooF. In 1.4.4 and 11.3.2 we established the representation formula

z +

with

Tp(z)=

From this we obtain by straightforward computation

urn = =
w-.O W Jr — z) .

because we are now dealing with points z for which > 1. Hence

urn
=

w-0 W

where

= (n+ 1)(n + 2)(n
+

Therefore, the theorem follows if we prove that

0, n 0, 1,2,..., (7.4)

if and only ifp€N(G).
If is the 0-series for f(z) = z", then by formula (7.3),
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= I
JJD JJK

By Theorem 7.1, the function is an element of A(G). Hence, if peN(G),
then (7.4) follows.

Conversely, if (7.4) holds, it follows from an approximation theorem of
Carleman [1] that p is orthogonal in D to all functions A(1). Formula (7.3)
then shows that p is orthogonal in N to all functions 01 with f in A(1). By
Theorem 7.1, every element of A(G) is of this form, and so jteN(G).

A slight modification of the above proof gives the following result: A
d(fferential p is infinitesimally trivial if and only tf Tp vanishes identically in E.

In section 5 we studied the function p —i A(p) = in the unit ball B(G) of
and proved that it is holomorphic. It follows that A has a derivative

DA ' 'i) for every p e B(G) (cf. the definition in 5.1). Direct computation shows

DA(O)(p) urn
w-0 W

Hence, Theorem 7.2 says that the set of infinitesimally trivial of G
is the kernel of the mapping DA(O).

In this section we shall use the class N(G) for studying extremal mappings,
but infinitesimally trivial complex dilatations are also met in connection with
other problems in the theory of Teichmilhler spaces. Their importance was
noticed already by Teichmüller, and they were utilized by Ahifors and Bets
in their studies regarding the complex structure of Teichmüller spaces. For
information about the class N(G) in the Teichmüller theory we refer to the
surveys Royden [2], Earle [2], and Kra [2].

7.5. Mappings with Infinitesimally Trivial Dilatations

If the complex dilatation of f9 is in N(G), we can improve the estimate
liSp lIq � 611 p derived in 11.3.3.

Theorem 7.3. Iffy has an infinitesimally trivial complex dilatation, then

� (7.5)

PROOF. Fix a point z e E and consider the holomorphic function

w —. ,fr(w) = (lzl2 — 1)2S111111(z)

in the unit disc. It follows from Theorem 7.2 that has a zero of order at least
2 at the origin. Application of Schwarz's lemma to which is bounded in
absolute value by 6, yields therefore
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�61w12.

Setting w = p H we get back our function and the estimate (7.5) follows.
0

Equality can hold in (7.5). To prove this consider the mappingf defined by
f(z) = z + k2/z for izi � I and f(z) z + 2k(fzj — 1) +
k f = f,, is a quasiconformal mapping of the plane with p(z) = 0 in
E and p(z) = kz/IzI in D. We see that

rr ri r211
p(z)fdxdy = k drdço = 0, n = 0, 1

JJb JoJo
It follows that p is in N(G) for the trivial group. Furthermore, pj) = k and

lim(1z12 — = 6k2.

We shall now apply Theorem 7.3 to prove an auxiliary result about infini-
tesimally trivial diatations, which will come into use in what follows.

Lemma 7.1. Let VE N(G) and <2. Then,for 0 � t � 1/4, there isa
[tv] such that II � I 2t2.

PRooF. By Theorem 7.3,

� 24t2.

For 0 � t � 1/4, we have 24:2 <2. Hence by formula (4.6), there is a complex
dilatation a(t) e [tvj for which

110(t)tLo 4IIS1j,iEIIq �42t2. 0

7.6. Complex Dilatations of Extrernal Mappings

Fix a point T5 and consider the family here fM fixes the points
1, i, — 1. In other words, we consider all quasiconformal self-mappings of D
whose complex dilatations are in and which agree with an f" on 5D.
As has been noted repeatedly, ibis family contains one or more extremal
mappings, i.e., mappings with the smallest maximal dilatation (Theorem 2.1).

The proof of the following lemma uses ideas applied by Krushkal [I] to a
special case and later elaborated by Reich and Strebel [1]; see also Reich [I].

Lemma 7.2. Let be extremal in its equivalence class, if p — K N(G), then

� IkL.

PROOF. Set k, H,cL = k1. We assume that k1 <k and prove
cannot then be extremal.
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Writing v = p — K, we first prove that for all sufficiently small positive
values oft,

f2flLo(ftv)1

has a smaller maximal dilatation than Lemma 7.1 we shall then
correct the boundary values of and still keep the maximal dilatation
smaller than that of f

Direct calculation gives

= p(z) — tv(z)
= Ip(z)I — 1 — Re(p(z)V(z))t + 0(t2). (7.6)

1 — tp(z)v(z) Iiz(z)I

Here = f"(z), and the remainder term 0(t2) is uniformly bounded in z.
Write E1 = {z€DIIp(z)I <(k + k1)/2}, E2 = D\E1. In E1, lji(z)I is strictly

less than k. By (7.6), there are positive numbers ö1 and t1, such that for z E E1,
IMC)l <k—ö1tift<t1.InE2,

1 p1 � (1 — � — k2)(k — k1).

From this and (7.6) we deduce that there are positive numbers c52 and t2, such
that for zç-E2, fA(4jj < k — 52t if t < t2. If 6 = min(61,62), t0 = min(t1,t2),
we thus have

12(C)I<k—ot

for t .< t0,a'tevery point
The mapping jA need not agree with fL on the boundary. But if 0(t) is as

in Lemma 7.1, then ft = fA of(T(t) has the same boundary values as f $4 We
have

+ k — & + 12t2

— Ilcr(t)IL, 1 — 12t2

Hence, for t small enough, II II <k = and the lemma is proved. 0

With the aid of this lemma, the desired characterization of extremal com-
plex dilatations can be readily given. Let us assume that and
(peA(G). We write

JN

and denote by
= 1)

the norm of p as an element of the dual space of A(G). If G is the trivial group,
this "dual" norm is denoted by �

We are now ready to prove the main result about extremal complex dilata-
tions (Hamilton [1], Krushkal [1])..
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Theorem 7.4. 1ff1' is extremal in its equivalence class, then

Ii a H = if (7.7)

PROOF. By the Habn—Banach extension theorem (Dunford—Schwartz [1], p.
63), there is a linear functional in L'(G) with AIA(G) and lI).II =
From what was said in 7.1 we deduce the existence of a such that

= and hAil = Since � we have to prove that
liPlix, �

From AJA(G) = we conclude that

JN

for 4EA(G). Hence — KEN(G), and by Lemma 7.2, � IIKL. 0

The necessary condition (7.7) for p to be extremal is also sufficient. Reich
and Strebel [2], with the aid of their "main inequality", proved that this is so -
for the trivial group. Later Strebel ([2], [5)) generalized the result, first to
finitely generated groups and then to all cases.

Theorem 7.4 allows the following conclusion (Kra [2]): Let f1' be extremal
for its boundary values among all quasiconformal mappings. If the operator
0: A(l)—+ A(G) is of norm <1, then not in

PROOF. Suppose that p e By formula

111111* = sup {[f i} � < hlpLL0.

This contradicts Theorem 7.4, f1' is extremal. 0

In particular, the extremal pin is not extremal in In terms of
Teichmüller distances, the result can be expressed as follows: IfS = DIG, then
(ii T5)(O, [p]) < [p]) (cf. 3.2 and 3.7).

7.7. Teichmüller Mappings

Let f1' be an extremal mapping for the point [p] e By Theorem 7.4, there
is a sequence of functions A (G) with if ii = 1, such that

urn I =
Jrq

Such a sequence is called a Hamilton sequence for p.
A Hamilton sequence always contains a subsequence which converges

weakly in A(G) to a function q, e A(G)(cf. 7:2). It thay happen that q vanishes
identically, in which case the sequence is said to be degenerate.
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If no Hamilton sequence is degenerate, we can draw a remarkable conclu-
sion about the extremal mapping (Strebel [3), Reich [1)).

Theorem 73. Let jt be an extremal complex dilatation for which no Hamilton
sequence is degenerate. If > 0, then every weakly convergent Hamilton
sequence tends in L1(G) to the same holomorphic quadratic differential and

= (7.8)

PRooF. Let (q,,) be a weakly convergent Hamilton sequence for and =
urn q,,(z). In 7.2 we showed that E A(G) and II � 1 (formula (7.2)). By the
triangle inequality

— 4'H � I — (7.9)

Given an c > 0, let F be a compact subset of a Dirichiet region N of G, such
that

I <e. (7.10)
J N\F

Since —÷ q(z) uniformly on F, there is an n0 such that for n> n0,

—4)1 —(I4)NI 14'l)) <

From — — (Iq',,I — 14)1) � + lq't — — IqI) = 214)1 and from
(7.10) we conclude that

I — 4)1 — — 14)1)) < 2e.
J N\F

Hence,

SN

for n > n0. From this and (7.9) it follows that

urn — = 1 — 114)11. (7.11)

Here 114)11 = 1. In order to prove this, we suppose that 114)11 < 1, and form
the sequence ((q,,, — (p)/ — 4)11). Trivially,

I
•1 11 �II,tL.

I — I — 114)11

JN 4)n lI4)N4)I \ JN
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By (7.11), the right-hand expression tends to as n Hence,

— — is a degenerate Hamilton sequence for p, which contra-
dicts the hypothesis. It follows that flq'II 1, and by (7.11), —' in
L1(G).

We conclude that

II II — = lim — qi) � urn — (p fl =0.
J N

Consequently,

0 = I — = —

.JN JN\ (PJ

This is possible only if the bracketed expression in the right-hand integral is
zero, and (7.8) follows.

Finally, let be the limit of another Hamilton sequence for Then we
deduce from (7.8) that ço/ifr Hence, the meromorphic function is
a positive constant. From II(PII = = I it follows that = 0

A quasiconformal mapping which is conformal or whose complex dilata-
tion is of the form (7.8) is said to be a Teichmüller mapping.

In 2.3 we constructed geodesic lines in T5. Suppose that an extremal for
[1J e is a Teichmüller mapping with p determined by (7.8). From lormula
(2.4) we see that a geodesic ray from the origin through to the boundary
of T5 allows the simple representation

0�t<l.
In particular, in the complex dilatation is extremal for the bound-
ary values of for every t, 0 � t < 1.

7.8. Extremal Mappings of Compact Surfaces

Theorem 7.5 is still implicit, but there are special cases in which it is possible
to deduce that Hamilton sequences cannot degenerate. In particular, this
conclusion can be drawn if the Riemann S is compact. We prefer to
express the result in terms of the mappings of S. and recall that studying the
family { I p} is equivalent to studying a homotopy class of quasiconfor-
mal mappings of S (cf. 3.1)

Theorem 7.6. On a compact Riemann surface, a quasiconformal mapping with
the smallest maximal dilatation in its homotopy class is a Teichmüller mapping.

PROOF. Let (q,,) be a weakly convergent Hamilton sequence with limit (p. For
a compact Riemann surface of genus > I, the Dirichlet regions N are rela-
tively compact in B (IV.5.1). Therefore
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l=limfI4,nl=
,JN

Flence, is not degenerate and the result we wanted to prove follows from
Theorem 7.5. 0

Since we assumed in this section that the Riemann surface S has a disc as
its universal covering surface, our reasoning does not apply as such to a
torus. But this case was thoroughly handled in section 6. It follows from
Theorem 6.3 that also in the case of a torus the extremals are Teichmüller
mappings.

Theorem 7.6 is Teichmüller's existence theorem. The first proof,, which is
based on a continuity argument, is in Teichmiiller [2]; see also [1]
and Bers [3]. Apart from technical details, the reasoning we used to prove
Theorem 7.6 is due to 1-lamilton [I].

Extremal mappings of compact Riemaun surfaces will be studied more
closely in the following section, where Theorem 7.6 will be complemented by
another famous result of Teichmüller: On a compact Riemann surface, a
Teichmüller mapping is always the unique extremal in its homotopy class.

Our proof of this uniqueness theorem will be based on the original reason-
ing of Teichmüller [1], with due regard to the clarifications later made in it
by Bers [3]. It would also be possible to apply the reasoning which yields the
converse of Theorem 7.4. Strebel [5] showed that such a method also estab-
lishes the uniqueness of the extremal.

8. Uniqueness of Extremal Mappings of
Compact Surfaces

8.1. Teichmüller Mappings and Quadratic Differentials

Having classified in !V.4. 1 all Riemann surfaces which admit the plane as a
universal covering surface, we know that if a compact Riemann is not
the sphere or a torus, i.e., if its genus is > 1, then it has a disc as it's universal
covering surface. The covering group is finitely generated, and its Dirichiet
regions are relatively compact on the universal covering surface (IV.5.1).

In section 4 we proved that —' S,IH is an imbedding of the Teichmüller
space T5 into the space of holomorphic quadratic differentials. Let us now
assume that S is a compact Riemann surface with genus p> 1. Then there is
another way to associate a holomorphic quadratic differential with each
point of T5. This leads to an imbedding which is simpler than the one given
by the mapping [p] -+ in that the image of T5 is $he open unit ball.
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In order to associate quadratic differentials with points the Teichmüller
space of a compact surface, we return to the extremal problem treated
in section 7. We proved that in every homotopy class of sense-preserving
homeomorphisms between two compact Riemann surfaces, a mapping with
the smallest maximal dilatation is always a TeichmUller mapping (Theorem
7.6). More precisely, an extremal mapping f of a surface S is either conformal
or its complex dilatation is of the form

(8.1)

where 0 < k < I and q is a holornorphic quadratic differential of S.
In this section we shall prove that every Teichmüller mapping is the

unique extremal in its homotopy class, i.e., that each homotopy class contains
exactly one Teichmüller mapping. This makes it possible to define an injective
mapping of the Teicbmüller space into the space of quadratic differentials.

Given a holomorphic quadratic cbfferential q on S. we say that the pair
(q,, k) determines the Teichmülfer mapping f which has the complex dila-
tation (8.1). 1Ff is determined by another pair 1,k1), we clearly have k1 = k.
Thus = and it follows that isa positive constant. We see
that a non-conformal Teiehmüller mapping determines the associated qua-
dratic differential up to a positive multiplicative constant.

We note that the absolute value of the complex dilatation of a Teichmüller
mapping is constant and that a mapping determined by the pair k) has the
maximal dilatation K = (1 + k)/(1 — k). The complex dilatation (8.1) is defined
at every point of S. except for the finitely many zeros of

8.2. Local Representation of Teichmüller Mappings

In the case of a torus, the properties of extremal mappings can be determined
without great difficulty. This is due to the fact that on a torus, all holomorphic
quadratic differentials are constants. The induced metric is therefore euclidean,
and the universal covering surface, the complex plane, with its explicit
covering group offers a convenient framework for studying extremal map-
pings. We proved that on C the extremals are globally affine, and that, up to
translations, they are unique in any homotopy class.

If the Riemann surface S has genus p> 1, the situation is much more
complicated. Holomorphic quadratic differentials now have 4p — 4 zeros,
which means that the induced mctric has singularities. Global coordinates
cannot be used for the study of Tcichmüller mappings. However, there is a
certain analogy with the case of a torus. It turns out that in a sense which we
shall now make precise, every Teichmüller mapping is locally affinc.

The local behavior of a Teichmüllcr mapping f becomes clear when we
introduce a suitable quadratic differential on the surface S' onto which J
maps S (Tcichmüller [1]).
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Theorem 8.1. Let f: S S' be a Teiehmüller mapping determined by a pair
(q, k). Then there exiSts a unique holomorphie quadratic d.fferensial on S'
with the properfies 1° if p has a zero of order n � 0 at p. then #
has a zero the same order a: 2° If is a natural parameter of at a
regular point p, then the mapping f has the representation

(8.2)

in a neighborhood of p in terms of a natural parameter of at f(p).

PROOF. Let p be an arbitrary point of S. (We actually prove a little more than
what is stated in the theorem.) Assume that q, has a zero of order n at p,n � 0
(n = 0 means of course that 0), and denote by a natural parameter
of at p. We define a mapping in a neighborhood of f(p) by setting

+ 2/(11+2)

ç of
= ( I — k ) -

- (8.3)

If p is a regular point, (8.3) reduces to the simple form (8.2). We prove that C'
is a local parameter on the Ri.mann surface S'. -

Let z' be an arbitrary local parameter on S' in a neighborhood of the
point f(p). Then z' of has the complex dilatation Since p(z)dz2

((n + 2)/2)2 111dC2 (formula (6.1) in !V.6) and sncc complex dilatation is a
(— 1, 1)-differential, we see that the complex dilatation of z' of can also be
expressed in the form k(C/JC9".

On the other hand, we compute from (8.3) that the mapping of has the
complex dilatation It follows that

C' is a local parameter of S'.
In order to construct the differential st', we consider a point p which

is so close to p that p2 is a regular point and lies in the domain of C. A natural
parameter at Pi is obtained if we integrate dz = ((ii + dC It
follows that = is a natural parameter at Pi. Then = +
(I — k) is a local parameter of S' at and = (n + We
conclude that

= ((ii + 2)/2)2C'dC'2

defines a holomorphic quadratic differential (i on S'. We see that is a
natural parameter of at 1(p). It has a zero of order n at 1(p). 0

If C = + Lip, of = + iq', the mapping (8.2) assumes the form

(8.4)

with K (1 + k)/(I — k). Hence, formula (8.2) can be expressed as foftows
a neighborhood i1 a regular point of the associated Thchmi,lIer mapping)s
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a conformal transformation, followed by a fixed stretching in the direction of
the positive real axis, followed by another conformal mapping.

For the Teichmüller mapping f: S -. S'. we call rp its initial and its
terminal differential.

8.3. Stretching Function and the Jacobian

The stretching (8.4) is a characteristic property of a Teichmüller mapping.
We shall now define a stretching function for an arbitrary quasiconformal
mapping of S.

Let p be a holomorphic quadratic differential on the Riemann surface S.
On S we use the metric induced by p (cf. IV.7 where such a metric was
studied). In addition to S. we shall consider in the following the image S' of S
under a Teichmüller mapping with q as initial differential. On S' we use the
metric induced by the terminal quadratic differential of this Teichmüller
mapping.

Let f: S -, S' be a quasiconformal mapping and z —' = w(z) its represen-
tation in a neighborhood of a regular point p ES. We wish to dime a stretch-
ing function of f on S. so that if z = x + iy and z' are natural parameters,
we have This is achieved if we set

Ow(z) 8w(z)
21(p) + k('(w(z))l . (8.5)

We first note that since and are quadratic differentials, is a Borel
function on S. If z and z' are natural parameters, q = 1, and so =
low + Owl =

Let a be a horizontal arc on S. The differential Aj.lcol"2 can be integrated
along a (with the possible exception of a family of arcs a whose union has the
area zero), and from the representation A1 = 1w,] it follows that

= l(f(a)). (8.6)

In later integrations we also need the Jacobian with respect to the ço- and
It is defined by the formula

J1(p) (lOw(z)J2 —

We see that is a function on S. In natural parameters, becomes the
ordinary Jacobian 10w12 — 10w12. Therefore,

f =

where ISI denotes the area of S'.
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8.4. Average Stretching

The following result about average stretching is an essential step on the road
leading to the extremal propcrties of Teichmüller mappings.

Lemma 8.1. Let f: S .• S be a quasiconformal mappiny hornotopic w the iden-
titv and q a holomorphic quadratic on S. Define A',. by (8.5)for ahd

= q,. Then

•

Js

PROOF.. We first define a one-dimensional average of A = 2,. Let be a subarc
of a horizontal trajectory with midpoint p and of length 2a. We set

(8.7)
2aja

Assume, for a moment, that q has an oriented trajectory structure (cf.
lV.6.3). Let be the union of the non-critical horizontal trajectories of q).
Since there are only finitely many critical horizontal trajectories on S, the set
S\SO has the area zero.

We define a flow on S0. tet p be a point on a horizontal trajectory
and i a real number. Let t) denote the point on which has the distance
It) from p and lies in the positive direction from p if t > 0, in the negative
direction if £ <0. Then x: S0 x R —. S0 is a continuous mapping such that

— x(p. t) is a conformal and isometric bijection for every t.
We conclude that A! = A o x(. t) is a Borel-measurable function on S0, and

1 1114,1 = I 2114,1 = I M4'I = f
Js Js0 Js

l-fenôe,

=
=

where Fubini's theorem justifies the last step. Here

=

We have thus proved that

f = I (8.8)
Js Js

provided that q, has an orientable trajectory system.
If the trajectory system of 4, is not orientable, we construct as in IV.6.3 a

two-sheeted covering of S on which the trajectories of the lift of (these
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ate the the of can he oriented. and denote the lifts
of;. and on then it is dear from ftc construction of that

I = I — I
J& Js

It follows that (8.8) is always
From (87). (8.6), and Lemma we that

2a(P) � I M/a

almost everywhere, where the number M does not depend on Hence, by

f � (1 — M,"a)jSI. (8.9)
,Js

On every non-critical trajectory, rviaUer whether it is a spiral or a closed
curve, wc can take a as large as we please. Letting a — x. we obtain the
lemma from (8.9). 0

8.5. Teichmüile(s Uniqueness Theorem

We have now completed the preparations needed for our proof of Teich-
muller's basic result about the uniqueness of extremal quasiconformal
mappings of compact Riemann surfaces.

Theorena 8.2. Let S he a compac: Riemann surface of genus > 1. In every
honiotopy class of sease-preserv(ng homeomorphisnis of S onto another Riemann
surface S', there is exact/v one Teich,nüller mapping, and its maximal dilatation
is unique(y smallest.

By Theorem 15. every homotopy class of sense-preserving homeomor-
phisms of S onto 5 contains quasiconformal mappings. By Theorem 2.1, each

contains a mapping with the smallest maximal dilatation. By Theorem
7.6, every such extremal is a Teichmüller mapping. Consequently, it remains
to be proved that every Teichrnüller mapping is the unique extremal in its
homotopy class. Taken together the results then imply that each homotopy
class contains exactly one Teichmüller mapping.

Suppose first that S -.+ S is also
conformal and homotopic to then f 'of0: S S is conformal and homo-
topic to the identity. By Theorem l.3,f = and so f0 is a unique extremal.

Henceforth we assume that f0: S —+ S' is a Teichmüller mapping defined by
the pair (ço, k0), k0 > 0. Let f: S —p S' be a quasiconformal mapping homoto-
pic to II K0 and 9K denote the maximal dilatations of and f, we prove
first that
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K�K0. (8.10)

The quasiconformal mapping h = 8' —+ S' is homotopic to the
identity. We apply Lemma 8.1 to h, using on S1 the metric induced by the
terminal quadratic differential of 10. It follows, by Schwarz's inequality,
that

(8.11)

In order to estimate the left-hand integral we consider a regular point p of
S with the additional property that f(p) is a regular point of S' for These
conditions exclude only finitely many points p of S. Let C = + be a
natural parameter at p. and C0 and natural parameters at the points
and f(p), respectively, such that in terms of C and C0, the mapping f0 has the
representation

• K0—1
Co = .— + in, k0 = • (8.12)

1_no

We see that and are both equal to the constant K0.
Let = w(C0) be a representation of h. (The various mappings are illus-

trated in Fig. 15.) By (8.12), f has the representation

BecauseDifferentiation yields 0C1(C) + = Ko(Dw(C0) +
f = hof0, we conclude that

h =
S.

Figure 15
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=

almost everywhere.
Reverting to the integral in (8.1 we now obtain

= $ =

Next we take into account the fact that f is K-quasiconformal. We express
the dilatation condition in the natural parameters and and deduce that

A � KJf a.e. (8.13)

Thus

� (K/KO)j' J114'I = (K/K0)IS'I.

In conjunction with (8.11), this yields (8.10).
Assume now that equality holds in (8.10). The above reasoning shows that

(8.13) must then hold as an equality a.e., so that

= K0.!,- a.e. (8.14)

We show that (8.14) is possible only if f and f0 satisfy the same Beltrami
equation.

We use again the natural parameters and From (8.12) we first see
that

=

In terms equation (8.14) assumes the form

+ = — a.e.

On the other hand, -. is K0-quasiconformal, so that

+ � K0(IaC1I — a.e.

These relations imply that + = and hence =
Further, + = — whence =

It follows that also satisfies the equation

=

We conclude that the mapping is conformal, which means that
is conformal. Since is homotopic to the identity, Theorem 1.3

tells that is the identity mapping. The unique extremality of 10 has
thus been proved. 0

As we already said at the end of section 7, the above proof of Theorem 8.2
follows essentially the modification Bers ([3] and the appendix in [12]) gave
of the original proof of Teichmüller [1].
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9. Teichmüller Spaces of Compact Surfaces

9.1. TeichmUller Imbedding

Let S be a compact Riemann surface of genus >1. Theorem 8.2 provides a
new way to map the Teichmüller space of S into the space Qs of holomorphic
quadratic differentials of S. By Theorem 8.2 every point p E T5 contains
Teichmüller mappings and they all have, the same complex dilatation. If
p = 0, these mappings are conformal. For all other points, the mappings are
determined by a pair (ço,k), where 0 < k < I and çoeQ5 is unique up to a
positive multiplicative constant.

By Theorem JV.5.5, the linear space Q5 is finite dimensional. By a funda-
mental theorem of linear algebra, all norm-induced metrics on are topo-
logically equivalent. Of the many natural metrics available, we choose here
the one which is induced by the hyperbolic sup norm: lIq'fl = sup I'pI/'i2.

In representing Teichmüller mappings by pairs k), we assume hence-
forth that p is normalized by the requirement = 1. For the point peT3,
p 0, we then have the unique representation

p = this case k = 0, and q is not
uniquely defined, but it is of course immaterial how q, is chosen.

Theorem 9.1. The mapping

(9.1)

where (peQs, = 1, andO � k < 1, is a homeomorphism ofT5 onto the open
unit ball of Qs•

PROOF. By our previous remarks, (9.1) is a well defined injection ofT5 into the
open unit ball of Qs. It is clearly also a surjection onto this ball.

In order to prove that (9.1) is continuous, we assume that
p = in We use in its fl-metric (see 111.2.2), which

is topologically equivalent to the Teichmüller metric of T5. By Theorem
8.2, we have PS(PR,O) = k1,, k. Hence, by the triangle inequality

— ki � It follows that k = 0, this implies that —

kçoll

Assuming that k> 0 we show that pM —* in Qs. Let us' lift the differentials
and qi to the universal covering surface H. In H, the analytic functions
n = 1, 2, ..., constitute a normal family. If — does not tend to

o as n —p thçre is a subsequence and a differential e Q5, t/i

fl#II = 1, such that — 0. Then a.e. By Lemma
3.1, = Hence q ,fr, which is a contradiction, and so
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urn — 0. From

we finally see that —. k(P, i.e., that (9.1) is continuous.
The continuity of the inverse of (9.1) follows from the invariance of domain.

The space Qs is finite dimensional and T5 is homeomorphic with an open
subset of Q5 (Theorems 4.3 and 4.8). Hence (9.1), as a continuous injection of
T5 into Q5, is a homeomorphism of onto its image. - 0

We call (9.1) the Teichmüller imbedding.

9.2. Teichmüller Space as a Ball of the Euclidean Space

In proving Theorem 9.1 wç chose the hyperbolic sup norm in Q5 for technical
reasons only. Since Qs is a (3p — 3).dimensional linear space over the complex
numbers, we can fix a base 4's, in Qs Then an arbitrary
has a representation

with complex coefficients; = x + iy1. The quadratic differential q can thus
be identified with the point (z1,z2 of or with the point

of the euclidean space We now introduce
the eudlidean norm

/3p—3 \1/2
H11 ( + y?)

in Q5.
Using this new norm, we can rephrase Theorem 9.1 as follows:

Theorem 9.2. The mapping

(9.2)

where co€Qs, = 1,andO � k < 1,isahomeomorphism of T5 onto the open
unit ball of the euclidean space

The validity of this statement follows immediately from Theorem 9.1, by
virtue of the fact that all norms in Qs define the same topology.

We conclude, in particular, that the Tcichmüller space of a compact Rie-
mann szirfac& of genus p> 1 is homeomorphit to This is an old
result of Fricke who proved it without the of quasiconformal mappings
by suitably parametrizing covering groups over compact surfaces. A mod-
ernized version of Fricke's proof has been given by Keen [13.
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lip 1, we proved that the Teichmüller space is isomorphic to the hyper-
bolic upper half-plane (Theorem 6.4). Hence, for p = I, the space is ho-
meomorphic to R2

The Bers imbedding of Theorem 4.8 also allows the conclusion that for
p> 1, the SpacCTS is homeomorphic to a subdomain of However, not
much is known about this domain. Now we can immediately draw the fol-
lowing conclusion: The Teichmüller space of a compact Ricmanñ surface is
contractible. This special result has, of course, some of its interest in light
of the Douady—Earle result that every Teichmüller space is contractible
(see 3.6).

9.3. Straight Lines in Teichmüller Space

Let S be a compact Riemann surface of genus p> 1. Then every point
of the Teichmüller space of S can be represented by the complex dilata-
tion of a unique TeichmüHer mapping. If q = e then r3(O,q) =

+ k)/(I — k)).
In 2.3 we studied geodesic lines in Teichmüller space. Since extremal

mappings are unique, the remark made in 7.7 can be complemented. We
deduce from formula (2.4), by using Theorem 8.2, that

—I<zt.czl,

is a geodesic line in T5 which passes through the origin and the point q.
Here

=
±

Consequently, by changing the parameter, we obtain the mapping.

x

which is an isometry of the real axis into We call such a path in T5 a
line. It follows that every point of lies on a straight line through

the origin.
In order to study geodesics through two arbitrary points of T5, we recall

that all Teichmüller spaces of Riemann surfaces of genus p are isomorphic
(see 5.6). The space T5 is a model of the abstract space 1;.

Let q1 and q2 be two points of T5. We can map T5 isometrically onto
Teichmüller space such that the image of one of the given points lies

at the origin. In view of what we proved about straight lines through the
origin, we obtain the following result: In the Tekhmüller space 1, any two
points lie o' a straight line.

This result holds in the case p = 1 also, because i; is then isomorphic to
the hyperbolic upper half-plane.
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9.4. Composition of Teichmüller Mappings

For an application in 9.5 we need a result about the composition of Teich-
muller mappings. As before, S is a compact Ricmann surface of genus >1.
Let f: S —+5' be a Teichmüller mapping determined by a pair (q,, k). Then

5' - S is a Teichmüller mapping detennined by the pair (— k), where
is the terminal differential off. For it follows from formula (8.2) that near

a regular point of ii',

where and are the natural parameters associated with and ,,1'. From
this we conclude that the complex dilatation off-1 is — by making
use of the fact that dC'2 = i/i(z') dz'2 and that the complex dilatation is a
(—1, 1)-differential.

Let us multiply (9.3) by iK = i(1 + k)/(l — k). Comparison with (8.2) then
yields the result that the terminal differential off —1 is —

For composed mappings we prove what will be needed later.

Lemma 9.1. Let f1: S S1 and 12: S —+ S2 be Teichmüller mappings determined
by k1) and (q'z, k2) such that q2fq1 is a constant. Then f2 off' is a Teich-
muller. mapping. Up to constants, the initial differential of f2 ofr' agrees with
that offr', and the terminal dfferential with that 0112.

PROOF. Let p€S be a regular point for Pi and We denote by C and C
natural parameters for (pj and at p vanishing at p, and by and C2 the
corresponding natural parameters for the terminal differentials of f1 and f2
at f1(p) and, f2(p).

Let us consider the projection mapping —, of It can be de-
composed into mappings C and

C C C and
is constant, we see that C*/C is constant. It

follows that C1 C2 is an afline transformation. Explicitly, we write =
a > 0,0 < 0 < 2ir. Then we can choose =

The stretchings --+ and C* —' C2 can be determined from (9.3) and (8.2).
It follows that

—

C2 — , — 2e ( — ( •

—

Since C1 is the natural parameter of the terminal differential of f1, we see
from (9.4) that 12 ofr' is a Teichmüller mapping whose initial differential is
a constant times the initial differential of fr'. The result about the terminal
differential of ofr' is obtained if we interchange the roles of f1 and 12.

0
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SI

'I

For the complex dilatation of —, we obtain the expression

i_ 10 7

95
I —

Let K1 and K2 be the maximal dilatations of f1 and f2. As regards the
maximal dilatation of f2 we use (9.5) to make precise what seems clear
geometrically. Suppose first that the initial differential 42 of is a positive
constant times the terminal differential of i.e., that 0 = x. We
then conclude from.(9.5), by simple computation, that 12 ofr' has the maxi-
mal dilatation K1 K2. The other extreme occurs if is a negative
constant, i.e., if 6 = 0. It then follows from (9.5) that 12 has the maximal
dilatation max(K1/K2, K2/K1).

The result of Lemma 9.1 can also be expressed as follows: 1ff1: S S1 and
f2: S1 —, S. are Teichmüller mappings, and the ratio of the terminal differential
of and the initial differential of 12 is constant, then 12 is a Teichmüller
mapping.

9.5. Teichmüller Discs

In 6.6 and 6.7 we proved that there exists a holomorphic isometry between
the Teichmüller space of a torus and the hyperbolic unit disc. We shall now
show that the same is true in a local sense in every Teichmüller space 1.

Let S be a coffipact Riemann surface whose genus is 1. We fix a bob-
morphic quadratic differential q of S (up to a positive con-
stant) and consider the

(9.6)

Figure 16
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of the unit disc D into the Tcichrnüller space T5. By Theorem 8.2. this
mapping is ir.jective. The mapping of D into the set B(G) of
Beltrami differentials of S is holomorphic. As a composition of
and the canonical projection it. i/ic (9.6) is Jzolomorphic.

Let

=

denote the image of D under (9.6). The subset A of is called the Teich,nüller
disc determined by -p.

With varying p. cvery A clearly contains the origin of T5. But otherwise
two TeichmUlkr discs arc disjoint if they are determined by quadratic dif-
ferentials whose quotient is not constant. This follows from the definition of
A, in view of the uniqueness result of Theorem 8.2.

Theorem 9.3. The mapping —' is an isometrv of the hyperbolic unit
disc onto the Teichrnüller disc determined by q.

PROOF. For dstances from the origin, isometry is clear:

=

where h denotes the hyperbolic distance in the unit disc.
In the general case, let and f, be the Teichrnüller mappings with com-

plex and By Lemma 9.1, the composition 1'
is also a Teichmüller mapping. From (9.5) (or from formula (1.4.4)) we see
that its complex dilatation has the absolute value ((zr — —

Therefore, by Theorem 8.2,

— -- I II — + — z2j
—=h(;1,:2). 0

2 Ji — z1z21 — — Z21

9.6. Complex Structure and Teichmüller Metric

The results concerning Teichmüller discs admit far-reaching generalizations.
In order to explain this, we first generalize the notion of hyperbolic distance.

Let f be a holomorphtc function in the unit disc D with values lying in D.
By using suitable Möbius transformations, we see that Schwarz's lemma can
be expressed in the form

h(f(z1),f(z2)) < h(z1.z2). (9.7)

From the way the hyperbolic metric was introduced to other domains by use
of conformal we conclude that (9.7) holds if f is an analytic
mapping of I? into an arbitrary simply connected domain with more than one
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boundary point, and also, if f maps D holomorphically into a Riemann
surllFce which admits D as its universal covering surface.

Property (9.7) gives rise to one more generalization. Let X be a complex
analytic manifold. There exists a largest pseudometric d on X such that

d(f(z1),f(z2)) � h(z1,z2)

for all holomorphic mappings 1: D —' X and for all z1, z2 in D. If d is a metric,

it is called the hyperbolic (or Kobayasbi) metric of X (Kobayashi [1]).
The following result of Royden [1] connects the Teichmüller metric with

the complex analytic structure of 7,. -

Theorem 9.4. In the space p �. I, the hyperbolic metric and the Teichmüller
metric are the same.

PROOF. For p 1, the theorem follows from (9.7) and the fact that 7, can then
be identified with the hyperbolic unit disc (see 6.7).

For p> 1, let us consider a model T5 of In studying the
between two points q1 and q2 of T5, we may assume, by replacing by
another modelof 7,, that q1 lies at the origin. Let q2 = [kc/(p1].

Let us apply again the holomorphic mapping (9.6) of the unit disc into i's.
By Theorem 9.3,

= h(z1,z2), (9.8)

where z1 and z2 are the preimages of q1 and q2 under (9.6). Here the bob-
morphic mapping of D into T5 depends on the given points. Therefore, we can
only infer from (9.8) that the Teichmüller metric is greater than or equal to
the hyperbolic metric of

Equality is in fact more difficult to establish; for the proof we refer to

Theorem 9.4 says that the Teichmüller metric can be recovered from the
complex analytic structure of 7. It follows that the Teichmüller metric is
invariant under biholomorphic self-mappings of 1;.

Royden (1] also proved that in 7,, p> 1, the modular group is the full
group of biholomorphic automorphisms of T,.

We showed in 2.7 that two points [ft] and [f2J ofT5 are equivalent under
the modular group if and only if the Riemann surfaces ft(S) and f2(S) are
conformally equivalent (Theorem 2.7). Hence, if S is a compact Riemann
surface of genus greater than 1, then by Royden's result, the points [f1J and
[f2] of T5 are equivalent under bihobomorphic mappings of T5 if and only if
the surfaces f1(S), and f2(S) are conformably equivalent. -

Royden's result also shows that the Teicbmülter imbedding (9.2) is not
hobouiorphic. For if it were, it would be biholomorphic. The group G of
biholomorphic self-mappings of the unit ball of would then be isomor-
phic to the modular group of 7;. However, the modular group is knownrto
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be properly discontinuous, whereas G (which contains all unitary mappings)
is not.

9.7. Surfaces of Finite Type

A Riemann surface S0 is of finite type ifS0 is contained in a compact Riemann
surface S and S\S0 consists of finitely many points and of finitely many
disjoint closed parametric discs of S.

Let S be of genus p, and consider the case in which S\S0 is the set of n
points. We say that S0 is then of type (p. n). The points of S\SO are called
punctures.

It follows from our previous analysis of covering groups that a Riemann
surface of type (p. n) admits a disc as its covering surface if and only if
2p — 2 + n > 0. Under this condition, which leaves otjt only the tori and the
extended plane with no more than two punctures, the Teichmuller theory of
surfaces of type n) is largely analogous with the of compact surfaces
of genus > 1. In particular, the following basic result is true:

Theorem 9.5. The Teichmüller space of a Riemann surface of type (p, n),
— 2 + n > 0, is homeomorphic to the euclidean space

The proof can be reduced to the case of a compact surface. The idea is to
construct suitable coverings of S branched at the points of S\S0. The proce-
dure is explained in Ahlfors [1], pp. 20—23.

We have emphasized many times the fact that the Teichmüller spaces of
compact surfaces with the same genus are all isomorphic. Similarly, the
Teichmüller spaces of all Riemann surfaces of type (p, n) are isomorphic,
because such surfaces are all quasiconformally equivalent.

Finally, let S0 be a Riemann surface of finite type such that S\S0 contains
discs. A Teichmüller theory analogous to the theory of compact surfaces can
again be developed for such surfaces. However, in this case the notion of,
reduced Teichmüller space (see 2.1) must be used. For an exposition of the"
theory of Teichmüller spaces of Riemann surfaces of finite type we refer to
Abikoff [2].
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